
An Efficient Method of Computing 
Static Single Assignment Form 

Ron Cytron* 
Jeanne Ferrante* 
Barry K. Rosen* 

Mark N. Wegman* 
F. Kenneth Zadeckt 

1 Introduction 
In optimizing compilers, data structure choices directly 
in.fluence the power and efficiency of practical program 
optimization. A poor choice of data structure can in- 
hibit optimization or slow compilation to the point where 
advanced optimization features become undesirable. Re- 
cently, static single assignment form [AWZSS, RWZSS] 
and the control dependence graph [FOW87] have been 
proposed to represent data flow and control flow properties 
of programs. Each of these previously unrelated techniques 
lends efficiency and power to a useful class of program 
optimizations. Although both of these structures are 
attractive, the difficulty of their construction and their 
potential size have discouraged their use [AJ88]. We 
present a new algorithm that efficiently computes these 
data structures for arbitrary control flow graphs. We also 
give analytical and experimental evidence that they are 
usually linear in the size of the original program. This 
paper thus presents strong evidence that these structures 
can be of practical use in optimization. 

After a program has been transformed into static single 
assignment (SSA) f orm, it has two useful properties: 

1. Each programmer-specified use of a variable is reached 
by exactly one assignment to that variable. 

2. The program contains +-functions, as described in Sec- 
tion 2, that distinguish values of variables transmitted 
on distinct incoming control flow edges. 

A precursor [SS70] of SSA form obtains Property 1 by 
inserting assignments from variables to themselves at ap- 
propriate places in the program. By inserting explicit $- 
- 

*IBM Research Division, T. J. Watson Research Center, Yorktown 
Heights, NY 10598. 

‘Computer Science Dept., Brown University, Providence, RI 
02!912. 

functions instead, SSA form leads to simpler formulations of 
works like [CLZ86, WZSS] that are based on the precursor. 

Property 1 has been exploited by a constant propaga- 
tion algorithm that deletes branches to code proven unexe- 
cutable at compile-time [WZSS]. Without SSA form, data 
flow information might have to be recomputed each time 
branches are deleted, rendering the algorithm excessively 
costly. Static single assignment form nicely summarizes 
those conditions relevant to code motion [CLZSS, RWZSS]. 
Additionally, the representation of simple data flow infor- 
mation (def-use chains) is more compact through SSA form. 
If a variable has D definitions and U uses, then there can be 
D * U def-use chains. When similar information is encoded 
in SSA form, there can be at most E def-use chains, where 
E is the number of edges in the control flow graph [RL86]. 

Exploitation of Property 2 has led to a global value- 
numbering algorithm that can track redundant computa- 
tions across control flow paths [RWZSS] and an algorithm 
for detecting program equivalence [AWZSS]. There is 
also an algorithm for increasing parallelism in imperative 
programs through a renaming transformation [CF87b] that 
is rather like SSA form. 

Control dependences [FOW87, CF87a] identify those 
conditions affecting statement execution. Informally, a 
statement is control dependent on a branch if one edge from 
the branch definitely causes that statement to execute while 
another edge can cause the statement to be skipped. Such 
information is vital for detection of parallelism [ABC+88], 
program optimization, and additionally program analy- 
sis [HPR88]. 

Section 2 explains SSA form. Section 3 introduces a 
new structure called dominance frontiers. Then we show 
how to compute SSA form (Section 4) and the control 
dependence graph (Section 5) efficiently using dominance 
frontiers. Section 6 shows that our algorithms behave 
linearly with respect to program size for programs restricted 
to certain control structures. We also give evidence of 
general linear behavior by reporting on experiments with 
FORTRAN programs. 

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial 
advantage, the ACM copyright notice and the title of the pubIication and its date appear, and notice is given that copying is by permission of the 
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. 

G3 1989 ACM 0-89791-294-2/89/0001/0025 $1.50 

25 



I 4-- I 
J c- 1 
Kc1 
Lc-I 
repeat 

if (P) 
then do 

JtI 
if (9) 

then L t. 2 
else L c 3 

KtK+I 
end 
else K c. K + 2 

repeat 

if CR) 
then L t L + 4 

until (S) 
ItI+6 

until (T) 

Ii c I 
Ji t 1 
Ki t.1 
Ll c I 
repeat 

J2 + d(J4, Jl) 
K2 + d(KS,KI) 
L2 + a9 T Ll) 
if (P> 

then do 

J3 +I1 
if (9) 

then L3 c. 2 
else L4 c. 3 

L5 -. 4(L3 9 L4) 
Kg+-K2+l 

end 
else K4 t,K2 + 2 

J4 + 9vJ3, J2) 
K6 - 4(K39K4) 
L6 c.d(Lz,Ls) 
repeat 

;; ‘;R$L9’ kd 

then L3 c L7 + 4 

L9 + ti(L8> L7) 
until (S) 
I4 - 12 + 6 

until (T) 

Figure 1. A Simple Program, Its SSA Form and Its Control Flow Graph 

2 Static Single Assignment Form 

The algorithms presented in this paper work for programs 
that contain arbitrary control structures. The statements 
in such programs are restricted to conditional expres- 
sions and assignment statements. Only simple, unaliased 
variables are considered; no arrays or pointer values are 
considered. Aliasing can be accommodated by techniques 
in [WZSS]. 

There are two separate steps required to translate a 
program into static single assignment (SSA) form. In the 
first step, special assignment statements called c$-functions 
are inserted at certain points in the program. In the second 
step, each variable V is given several new names Vi for 
various integers i. Each mention of V in the program is 
replaced by a mention of one of the new names Vi. The 
SSA form of a simple program is given in Figure 1. 

Before explaining SSA form in detail, we review the 
modeling of program control flow by a directed graph. The 
statements of a program are organized into (not necessarily 
maximal) basic blocks, where program flow enters a basic 
block at its first statement and leaves the basic block at its 
last statement. Basic blocks are indicated by the column of 
numbers in parentheses in Figure 1. A con2rol flow graph 
or CFG is a directed graph. The nodes of CFG are the 
basic blocks of a program and two additional nodes: Entry 
and Exit. There is an edge from Entry to any basic block 

where the program can be entered. There is an edge to 
Exit from any basic block that can exit the program. The 
other edges of CFG represent transfers of control (jumps) 
between the basic blocks. We assume that each node is on 
a path from Entry and on a path to Exit. 

For each node X, a successor of X is any node Y 
with an edge X + Y in CFG and Succ(X) is the set 
of all successors of X (similarly for predecessors). The 
control flow graph for our example program is given on 
the right of Figure 1. For technical reasons related to the 
representation of control dependences, there is also an edge 
from Entry to Exit. Finally, each variable is considered 
to have an assignment in Entry to represent whatever 
value the variable may have when the program is entered. 
This assignment is treated just like the ones that appear 
explicitly in the code. 

A &function has the form U e 4( V, W, . ..). where 
u, v, w, . . . are variables and the number of operands 
v, w, . . . is the number of control flow predecessors of 
the point where the &function occurs. The control flow 
predecessors of each point in the program are listed in some 
arbitrary fixed order, and the j-th operand of q!~ is associated 
with the j-th predecessor. If control reaches the &function 
from its j-th predecessor, then U is assigned the value of 
the j-th operand. Each execution of a &function uses only 
one of the operands, but which one depends on the flow of 

26 



control just before the &function. 
For any variable V, one can insert a trivial &function 

V c. q5(V, V, . ..) at the entrance to any CFG node in the 
program without changing the semantics. Why should one 
want to perform such insertions? By placing the insertions 
carefully and then renaming the mentions of V, one can put 
the program into SSA form. Specifically, we assume that 
any number of new variables Vi (for i = 0, 1,2, . ..) can be 
generated to serve as new names for V. The transformed 
program is defined to be in SSA form if, for every original 
variable V, &functions for V have been inserted and each 
mention of V has been changed to a mention of a new name 
K such that the following conditions hold: 

1. If a CFG node 2 is the first node common to two 
nonnull paths X f Z and Y f Z that start at 
nodes X and Y containing assignments to V, then a 
&function for V has been inserted at entrance to Z. 

2. Each new name V;: for V is the target of exactly one 
assignment statement in the program text. 

3. Along any control flow path, consider any use of a new 
name Vi for V (in the transformed program) and the 
corresponding use of V (in the original program). Then 
V and K have the same value. 

A program is in minimal SSA form if it is in SSA form and if 
the number of &functions inserted is as small as possib1e.l 

The optimizations that depend on SSA form are still 
valid if there are some extraneous &functions, beyond those 
that would appear in minimal SSA form, Extraneous 
&functions sometimes inhibit optimization by concealing 
useful facts; extraneous &functions always add unnecessary 
overhead to the optimization process itself. Thus it is im- 
portant to place ql-functions only where they are required. 

For any variable V, the CFG nodes where we should 
insert &functions in the original program can be defined 
recursively by Condition 1 in the definition of SSA form. 
A node Z needs a &function for V if Z is the first 
node that two nonnull control flow paths have in common, 
when those two paths originate at two different nodes 
containing assignments to V or needing $-functions for V. 
Nonrecursively, we may observe that a node Z needs a d- 
function for V because Z is the first node common to two 
n.onnull paths X f Z and Y A Z that start at nodes X 
a.nd Y containing assignments to V. If 2 did not already 
contain an assignment to V, then the $-function inserted 
at Z adds Z to the set of nodes that contain assignments 
to V. With more nodes to consider as origins of paths, 
we may observe more nodes appearing as the first node 
common to two nonnull paths originating at nodes with 
assignments to V. The set of nodes observed to need 4- 
functions will gradually increase until it stabilizes. When 
#-functions are placed this way, minimal SSA form can 
be obtained by an easy adaptation of well-known def-use 

1 As is usual in code optimization, we avoid undecidability by 
considering all paths (rather than those that can actually be taken) 
and by ignoring the actual semantics of operators (other than 4). 
Formally, sameness of values is what has been called transparent 
equivalence [RWZSS, $8.11. 

3.1 Definition and Algorithm 
The dominance frontier DF(X) of a CFG node X is the set 
of all CFG nodes Y such that X dominates a predecessor 
of Y but does. not strictly dominate Y: 

DF(X) = { Y ] (3 P E Pred(Y))( X 2 P and X +Y )}. 

Computing DF(X) directly from the definition would re- 
quire searching much of the dominator tree. The total time 

27 

chaining. The algorithm presented in this paper obtains 
the same end results as this brute-force approach, but it 
places the +-functions and performs the renaming in much 
less time than brute force would require. 

Minimal SSA form is a refinement of Shapiro and 
Saint’s [SS70] notion of a pseudo-assignment. The pseudo- 
assignment nodes for V are exactly the nodes that need 
$-functions for V. For a CFG with E edges that describes 
a program with V variables, one algorithm [RT82] requires 
O(Ea(E)) b’t 1 vector operations (where each vector is of 
length V) to find all the pseudo-assignments. A simpler 
algorithm [RWZSS] for reducible programs computes SSA 
form in time O(E x V). Both of these algorithms are ef- 
fectively quadratic, and the [RWZSS] algorithm sometimes 
uses extraneous &functions. The method proposed here is 
O(E + T + DF), where T is the total number of ordinary 
assignments and &functions and DF is the total size of 
all dominance frontiers (we describe this structure later). 
While the numbers T and DF can be quadratic in the size of 
the program, we give evidence that they are rarely so. The 
insight allowing us to obtain a bound that does not grow 
multiplicatively with the number of variables is that we 
can decide where to insert &functions from the dominance 
frontiers. The size of the dominance frontiers depends only 
on the control flow of the program. 

3 Dominance Frontiers 
In this section we introduce the dominance frontier map- 
ping and give an algorithm for its computation. We then 
relate proper location of $-functions to dominance frontiers. 

Before proceeding, we review the dominance rela- 
tion [Tar741 between nodes in the control flow graph. Let X 
and Y be nodes in CFG. If X appears on every path from 
Entry to Y, then X dominates Y. Domination is both 
reflexive and transitive. If X dominates Y and X # Y, 
then X strictly dominates Y. In formulas, we write X >> Y 
for strict domination and X 2Y for domination. To say 
that X does not strictly dominate Y, we write X 2 Y. 
The immediate dominator of Y (denoted idom(Y)) is the 
closest strict dominator of Y on any path from Entry to 
Y. In a dominator tree, the children of a node X are 
all immediately dominated by X. Let E be the number 
of edges in CFG. The dominator tree of CFG can be 
constructed in O(Ea(E)) time [LT79] or (by a more difficult 
algorithm) in O(E) time [War85]. 

The dominator tree of CFG has exactly the same set 
of nodes as CFG but has a very different set of edges. 
The words predecessor, successor, path always refer to CFG 
here. The words parent, child, ancestor, descendant always 
refer to the dominator tree. 



to compute DF(X) f or all nodes X would be quadratic, 
even when the sets themselves are small. To compute the 
dominance frontier mapping in time linear in the size of 
the mapping, we define two intermediate sets DFlbedl and 
DFup for each node such that the following equation holds: 

DF(X) = DFrocor(X) U U DFd-0 (1) ZEChildren(X) 
Given any node X, some of the successors of X may 
contribute to DF(X). This local contribution DFroear(X) 
is defined by 

DF~,,,I(X) = { Y E SW(X) 1 X z+ Y }. 

Given any node 2 that is not the root Entry of the domi- 
nator tree, some of the nodes in DF(Z) may contribute to 
DF(X) for X = i&m(Z). The contribution DFup(Z) that 
2 passes up to idom(Z) is defined by 

DFup(Z) = {Y E DF(Z) 1 idom(Z) =pY }. 

Lemma 1 The dominance frontier equation (1) is correct. 

Proof. Because dominance is reflexive, DFrOca,(X) c 
DF(X). Because dominance is transitive, each child 2 
of X has DF,,(Z) C DF(X). We must still show that 
everything in DF(X) has been accounted for. Suppose 
Y E DF(X), and let U -+ Y be an edge such that X 
dominates U but does not strictIy dominate Y. If U = X, 
then Y E DFloea,(X) and we are done. If U # X, on the 
other hand, then there is a child 2 of X that dominates U 
but cannot strictly dominate Y because X does not strictly 
dominate Y. This implies Y E DF,,(Z). 0 

The intermediate sets can be computed with simple 
equality tests as follows. 

Lemma 2 For any node X, 

Dfi,,eol(X) = { Y f Succ(X) 1 idom(Y) # X }. 

Proof. We assume Y E Succ(X) and show that 

( x >> Y ) e ( idom(Y) = x ). 

The “if” part is true because strict dominance is the 
transitive closure of immediate dominance. For the “only 
if” part, suppose X strictly dominates Y, and hence that 
some child V of X dominates Y. Then V appears on any 
path from Entry to Y that goes to X and then follows the 
edge X ---t Y, so either V dominates X or V = Y. But V 
cannot dominate X, so V = Y and idom(Y) = idom(V) = 
x. 0 

Lemma 3 For any node X and any child 2 of X in the 
dominator tree, 

DE&-) = (Y E DF(Z) 1 idom(Y) # X }. 

Proof. We assume Y E DF(Z) and show that 

( x >> Y ) w ( idom(Y) = x ). 

The “if” part is true because strict dominance is the 
transitive closure of immediate dominance. For the “only 

28 

if” part, suppose X strictly dominates Y, and hence that 
some child V of X dominates Y. Choose a predecessor U 
of Y such that Z dominates U. Then V appears on any 
path from Entry to Y that goes to U and then follows 
the edge U -+ Y, so either V dominates U or V = Y. If 
V = Y, then idom(Y) = idom(V) = X and we are done. 
We suppose V # Y (and hence that V dominates U) and 
derive a contradiction. Only one child of X can dominate 
U, so V = 2 and 2 dominates Y. This contradicts the 
hypothesis that Y E DF(Z). 0 

These results imply the correctness of the algorithm 
in Figure 2 for computing dominance frontiers. The 
/*local*/ line effectively computes DFloeal(X) on the fly 
and uses it in (1) without needing to devote storage to it. 
The /*up*/ line is similar for OFup( We traverse the 
dominator tree bottom-up, visiting each node X only after 
having visited each of its children. To illustrate the working 
of this algorithm, we tabulate the results in Figure 3, where 
CFG comes from the program in Figure 1. 

for each X in a bottom-up traversal 
of the dominator tree do 

DF(X) t.O 
for each Y E Succ(X) do 

if idom(Y) # X 
then DF(X) c DF(X) U {Y} /*local*/ 

end 
for each 2 E Children(X) do 

for each Y E DF(Z) do 
if idom(Y) # X 

then DF(X) c. DF(X) U {Y) /*up*/ 
end 

end 
end 

Figure 2. Calculation of DF 

Theorem 1 The algorithm in Figure 2 is correct. 

Proof. Direct from the preceding lemmas. 0 

Consider a CFG with N nodes and E edges. The 
dominance frontier algorithm eventually examines all edges 
of CFG in computing DFloeol. Computing DFup will (at 
worst) require propagating N nodes through the dominator 
tree. The time required to compute DFup and therefore DF 
is proportional to the size of DF,,,. Since the dominator 
tree has N - 1 edges, the computation takes time O(N2). 
Thus, the overall algorithm has worst-case complexity 
O(E + N2). However, Section 6 shows that the size of 
the mapping DF is usually linear in practice. We have 
implemented this algorithm and have observed that it is 
faster than the standard data flow computations in the 
PTRAN compiler [ABC+@]. 

3.2 Using Dominance Frontiers to Find 
Where &Functions Are Needed 

We start by restating more formally the nonrecursive 
characterization of where the &functions should be located. 
Given a set S of CFG nodes, the set J(S) of join nodes 



1 Exit 

Node F Entry 
succ idorn Dfiocar DFu, 

Exit, i 
I 2 Entry 
2 3, 7 I Exit 
3 4, 5 2 

4 6 3 6 
6 6 3 6 

6 8 3 8 8 
7 8 2 8 

8 9 2 Exit, 2 
9 10, 11 8 Exit, 2 

IO 11 9 11 
11 9, 12 9 9 Exit, 2, 9 

Exit, 2 11 Exit, 2 Exit, 2 
Entry 

Figure 3. Example Dominator Tree and Dominance Frontier Computation 

is defined to be the set of all nodes 2 such that there are 
two nonnull CFG paths that start at two distinct nodes in 
S and have 2 as the first node in common. The iterated 
ajoin J+(S) is th e 1 imit ofthe increasing sequence ofsets of 
nodes 

Jl = J(S); 
J. r+l = J(Su Jj). 

:In particular, if S happens to be the set of assignment nodes 
for a variable V, then J+(S) is the set of $-function nodes 
for V. 

The join and iterated join operations map sets of 
nodes to sets of nodes. We extend the dominance frontier 
mapping from nodes to sets of nodes in the natural way: 

DF(S) = u Dwo 
XES 

As with join, the iterated dominance frontier DF+(S) is 
t#he limit of the increasing sequence of sets of nodes 

DFI = DF(S); 
DE+1 = DF(S U DFi). 

The actual computation of DF+(S) is performed by an effi- 
cient worklist algorithm; the formulation here is convenient 
for relating iterated dominance frontiers to iterated joins. 
If the set S happens to be the set of assignment nodes for 
a. variable V, then we will show that 

J+(S) = DF+(S) 

a.nd hence that the location of the &functions for V can be 
computed by the worklist algorithm for computing DF+(S) 
that is given in Section 4. 

The following lemmas do most of the work by relating 
dominance frontiers to joins. 

Lemma 4 For anynonnullpath p : X f Z in CFG, there 
is a node X’ E (X} U DF+((X}) on p that dominates 2. 

Proof Let X’ be the last node in {X} U DF+({X}) 
on p. We suppose X’ does not dominate Z and derive a 
contradiction. Because dominance is reflexive, X’ # 2 and 

DF 

Exit 
Exit, 2 

8 
6 
6 
8 

8 
Exit, 2 

Exit, 2, 9 
ii 

Exit, 2, 9 
Exit, 2 

there is a first node Y after X’ on p such that X’ does not 
dominate Y. The predecessor of Y on p is dominated by 
X’, so 

Y E DF(X’) E DF( {Xl U DF+({X})) = DF+({X}), 

which contradicts the choice of X’. 0 

Lemma 5 Let X # Y be two nodes in CFG and suppose 

that nonnull paths p : X f Z and q : Y 2 Z in 
CFG have Z as the first node in common. Then Z E 
DF+({X}) U DF+({Y}). 

Proof. We start by proving the lemma under the added 
hypotheses that 2 # X and 2 # Y. Let X’ be from 
Lemma 4 for the path p. Let Y’ be from Lemma 4 for the 
path q. Let p’ and q’ be the corresponding final segments 
of p and q. Any path from Entry to Y’ and then to Z along 
q’ must include X’, but Z is the only node in q’ that lies 
on p. Therefore 

X’&Y’ or X’=Z. 

Similarly, 
Y’&X’ or Y’=Z. 

Because X’ and Y’ cannot dominate each other, one of 
them must be Z. We may assume X’ = Z and hence 
Z E {X) U DF+({X)). But Z # X, so Z E DF+({X}) G 
DF+({X}) u DF+({Y}). 

Now suppose that Z is one of the origin nodes X, Y. 
We may assume Z = X, which implies Z # Y. If the first 
edge along p is Z + Z, then Z E DF({Z)) C DF+({X}) 
and we are done. Suppose instead that the first edge along 
p is Z ---) A # Z. We may apply the previous paragraph to 
the paths a and q, where a is the rest of p after Z 4 A. We 
get A’ and Y’ like X’ and Y’ from the previous paragraph, 
such that 

A’zY’ or A’=Z; (2) 
Y’aA’ or Y’=Z. (3) 

If Y’ = Z, then we use Z # Y to continue as before and 
derive Z E DF+({Y}). Suppose instead that Y’ # Z, 

29 



so (3) implies Y’ 2 A’ and then (2) implies A’ = 2. 
But A’ E {A) U DF+({A}), so there is a sequence 
A = Ao, . . . . Ar; = 2 of nodes on a, such that each i has 
Ai+1 E DJ’(A) with Ai dominating any node after Ai but 
before Ai+l on a. By induction on i, we can also show that 

Ai E DF+({Z}) 01: 22 Ai (4) 

In particular, for i = L - 1, we find that Ai dominates 
the predecessor of 2 on u and satisfies (4). In both cases, 
2 E m-+((z)) = DF+({x}). r.l 

Lemma 6 For any set S of CFG nodes, J(S) C DF+(S). 

Proof. We apply Lemma 5. Cl 

Lemma 7 For any set S of CFG nodes such that Entry E 
s, m-(S) c J(S). 

Proof. Consider any X E S and any Y E DF(X). 
There is a path from X to Y where all nodes before Y are 
dominated by X. There is also a path from Entry to Y 
where all of the nodes are nol dominated by X. The first 
node common to both paths is therefore Y. 0 

Theorem 2 The set of nodes that need &functions for 
any variable V is the iterated dominance frontier DF+(S), 
where S is the set of assignments for V. 

Proof. The set of nodes that need &functions for V is 
J+(S). By Lemma 6 and induction on i in the definition 
of J+, we can show that 

J+(s) c DF+(S). 

The induction step is as follows: 

J* t+l = J(S U Ji) C J(S u OF+(S)) 
s DF+(S u m+(s)) = DF+ (S). 

The node Entry is in S, so Lemma 7 and another induction 
yield 

M+(S) c J+(S). 0 

4 Construction of 
Minimal SSA Form 

The algorithm in Figure 4 inserts trivial &functions. The 
outer loop of this algorithm is performed once for each 
variable in the program. Several data structures are used: 

W is the worklist of CFG nodes that are being 
processed. In each iteration of this algorithm, W 
is initialized to the set d(V) of nodes that contain 
assignments to V. Each iteration terminates when the 
worklist becomes empty. 

Work(*) is an array of flags, one flag for each node, 
where Work(X) is 1 if X has ever been added to W. 
Each node may be added to W only once during each 
iteration. 

DomFronPlzls(*) is an array of flags, one for each 
node, where DomFronPlus(X) is 1 if a &function 
for V has already been inserted at X. At the end of 
each iteration, the nodes X with DomFronPlus(X) = 
1 are exactly the nodes in the iterated dominance 
frontier of d(V). 

30 

for each variable V do 
DomFronPlus(*) t. 0 
Work(*) + 0 
wt0 
for each X E d(V) do 

Work(X) + 1 
W+.WU{X} 

end 
while W # 8 do 

take X from W 
for each Y E DF(X) do 

if DomFronPlus(Y) = 0 
then do 

add +-function for V to Y 
DomFronPlus(Y) t 1 
if Work(Y) = 0 

then do 
Work(Y) t. 1 
W+WU{Y} 

end 
end 

end 
end 

end 

Figure 4. Placement of &functions 

The time required to process a single variable in 
Figure 4 is proportional to the total number of ordinary 
assignments and &functions plus the total number of 
relevant dominance frontier relationships. 

The algorithm in Figure 5 renames all mentions of 
variables while visiting the nodes of the dominator tree in 
a depth-first search. New names denoted Vi, where i is an 
integer, are generated for each variable V. The search starts 
at Entry, where the entrance value of V is represented by an 
assignment with an empty right-hand side. After renaming 
each V to VO here, the search moves on to other nodes. The 
visit to a node processes the statements associated with the 
node in sequential order, starting with any &functions that 
may have been inserted. The processing of a statement 
requires work for only those variables actually mentioned 
in the statement. In contrast with Figure 4, we only need a 
loop over all variables when we initialize two arrays among 
the following data structures: 

S(*) is an array of stacks, one stack for each variable V. 
The stacks can hold integers. The integer i at the top 
of S(V) is used to construct the name Vi that should 
replace a use of V. 

C(*) is an array of integers, one for each variable V. 
The counter value C(V) tells how many assignments 
to V have been processed. 

WhichPred(Y, X) is an integer telling which prede- 
cessor of Y in CFG is X. The j-th operand of a q5- 
function in Y corresponds to the j-th predecessor of Y 
from the listing of the inedges of Y. 



SD Each assignment statement A has the form 

MS(A) + RHS(A) 

where the right-hand side RHS(A) is an expression 
and the left-hand side LHS(A) is the target variable 
V. After renaming has replaced V by vi as the target, 
the old target V is still remembered as oldLHS(A). 

C(‘*) + 0 
S(k) t. EmptyStack 
call SEARCH(Entry) 

SEARCH(X) : 
for each assignment A in X do 

if A is an ordinary assignment 
then do 

for each variable V used in RHS(A) 
replace use of V by use of Vi 

where i = %4v9) 
end 

let V be LHS(A) in 
i + C(V) 
replace V by K as LHS(A) 
push i onto S(V) 
C(V) c.i+ 1 

end 
end 
for each Y E Succ(X) do 

j t. WhichPred(Y, X) 
for each 4-f unction F in Y do 

replace the j-th operand V of F by 
K where i = Top(S(V)) 

end 
end 
for each Y E Children(X) do 

call SEARCH(Y) 
end 
for each assignment A in X do 

pop S(oldLHS(A)) 
end 

end SEARCH 

Figure 5. Construction of SSA Form 

The next lemma shows that it makes sense to speak 
of “the” assignment to a new name for a variable in the 
transformed program. 

Lemma 8 Each new name & mentioned in the trans- 
formed program is the target of exactly one assignment. 

Proof. Because the counter C(V) is incremented after 
processing each assignment to V, there can be at most one 
assignment to K. Because any use of K has i = Top(S(V)) 
at the time V is replaced by Vi, there is at least one 
assignment to Vi. 0 

With each variable V and CFG node X, we can 
associate the name TopAfter(V, X) of V determined by 

the top of the stack S(V) at the end of the first loop in 
SEARCH(X) . Specifically, 

TopAfter(V,X) = & where i = Top(S(V)). 

If a child Y of X does not have a $-function for V, then 
the first use (if any) of V in Y is replaced by a use of 
TopAfter(V, X). Thus Y inherits a name for V from its 
parent X = idom(Y). On the other hand, any predecessor 
P of Y in CFG determines a name TopAfter(V,P) with 
more obvious relevance to the question of whether the 
transformed program is equivalent to the original. Fortu- 
nately, there is no conflict between candidate names. 

Lemma 9 For any variable V and any CFG edge P -+ Y 
such that Y does not have a $-function for V, 

TopAfter(V, P) = TopAfter(V, idom(Y)). (5) 

Proof. We may assume P # idom(Y). Because Y does 
not have a &function for V, if a node X has Y E DF(X), 
then X does not assign to a name of V. We use this fact 
twice below. 

By Lemma 2, Y E DFI~~~~(P) C DF(P) and P does 
not assign to a name of V. Let U be the first node in 
the sequence idom( P), idom(idom(P)), . . . that assigns to a 
name of V. Then 

TopAfter(V, P) = TopAfter(V, U). (6) 

Because U assigns to a name of V, Y 9 DF(U). But U 
dominates a predecessor of Y, so U strictly dominates Y. 
For any X with U >> Xsidom(Y), we get XzP because 
X >> Y. By the choice of U, U >> X 2 P implies that X 
does not assign to a name of V. Therefore 

TopAfter(V, U) = TopAfter(V, idom(Y)) 

and (5) follows from (6). 0 

Lemma 10 Consider any control flow path in the trans- 
formkd program and the same path in the original program. 
For any variable V and any edge X + Y encountered along 
the path, the value of V that flows from X to Y in the 
original program is equal to the value of TopAfter(V, X) 
that Aows from X to Y in the transformed program. 

Proof. We use induction along the path, starting 
with V = VO after each entering value assignment in 
Entry. To continue the induction, consider any consecutive 
edges X -+ Y + 2 along the path, and let j = 
WhichPred(Y, X). W e assume V = TopAfter(V, X) along 
the first edge and show that V = TopAfter(V, Y) along the 
second edge. 

If V has a q&function in Y, then the j-th operand 
of q5 is TopAfter(V,X) and the target of the +-function 
in the transformed program does receive the value of V. 
If V does not have a &function in Y, then Lemma 9 is 
applicable. In both cases, the correct value of V is already 
available at the start of the basic block of ordinary code 
that defines Y. Within the basic block, the flow of control 
in the transformed program is the same as the sequence 
of processing statements in the first loop in SEARCH. For 
each variable V, we do have V = TopAfter(V, Y) along 
the second edge. 0 



Theorem 3 Any program can be put into minimal SSA 
form by applying the algorithm in Figure 4 and then the 
algorithm in Figure 5. 

Proof. Figure 4 places the &functions for V at the 
nodes in the iterated dominance frontier DF+(S), where 
S is the set of assignments to V in the original program. 
By Theorem 2, DF+(S) is the set of nodes that need +- 
functions for V, so we have obtained Condition 1 in the 
definition of SSA form with the fewest possible +-functions. 

We must still show that renaming is done correctly by 
Figure 5. Condition 2 in the definition of SSA form follows 
from Lemma 8. Condition 3 in the definition of SSA form 
follows from Lemma 10. 0 

5 Construction of 
Control Dependences 

In this section we show that control dependences [FOW87] 
are essentially the dominance frontiers in the reverse graph 
of the control flow graph. Let X and Y be nodes in 
CFG. If X appears on every path from Y to Exit, then 
X postdominates Y.2 Like the dominator relation, the 
postdominator relation is reflexive and transitive. If X 
postdominates Y but X # Y, then X strictly postdomi- 
nates Y. The immediate postdominator of Y is the closest 
strict postdominator of Y on any path from Y to Exit. 
In a postdominator tree, the children of a node X are all 
immediately postdominated by X. 

A CFG node Y is control dependent on a CFG node 
X if both of the following hold: 

1. There is a nonnull path p : X 2 Y such that Y 
postdominates every node after X on p. 

2. The node Y does not strictly postdominate the node 
X. 

The definition of control dependence we use here can be 
shown to be equivalent to the original definition [FOW87] 
using elementary first-order logic. 

Lemma 11 Let X and Y be CFG nodes. Then Y 
postdominates a successor of X if and only if there is a 

nonnull path p : X f Y such that Y postdominates every 
node after X on p. 

Proof. Suppose that Y postdominates a successor U 
of X. Choose any path Q from U to Exit. Then Y appears 
on q. Let T be the initial segment of q that reaches the 
first appearance of Y on q. For any node V on T we can 
get from U to Exit by following r to V and then taking 
any path from V to Exit. Because Y postdominates U but 
does not appear before the end of r, Y must postdominate 
V as well. Let p be the path that starts with the edge 

X + U and then proceeds along r. Then p : X f Y and 
Y postdominates every node after X on p. 

*The postdominance relation in FOWS7] is irreflexive, while the 
definition we use here is reflexive. The two relations are identical on 
pairs of distinct elements. We choose the reflexive definition here to 
make postdominance the dual relation of the dominance relation. 

Conversely, given a path p with these properties, let U 
be the first node after X on p. Then U is a successor of X 
and Y postdominates U. 0 

The reverse control flow graph RCFG has the same 
nodes as the given control flow graph CFG, but has an 
edge Y -+ X for each edge X + Y in CFG. The roles 
of Entry and Exit are also reversed. The postdominator 
relation on CFG is the dominator relation on RCFG. 

Corollary 1 Let X and Y be nodes in CFG. Then Y is 
control dependent on X in CFG if and only if X E DF(Y) 
in RCFG. 

Proof. Using Lemma 11 to simplify the first condition 
in the definition of control dependence, we find that Y is 
control dependent on X if and only if Y postdominates a 
successor of X but does not strictly postdominate X. In 
RCFG, this says that Y dominates a predecessor of X but 
does not strictly dominate X, i.e., X E DF(Y). 0 

Figure 6 applies this result to compute control depen- 
dences. By applying the algorithm in Figure 6 to the control 
flow graph in Figure 1, we obtain the control dependences 
in Figure 7. We remark that the edge from Entry to Exit 
was added to CFG so that the control dependence relation, 
viewed as a graph, would be rooted at Entry. 

build RCFG 
build dominator tree for RCFG 
apply the algorithm in Figure 2 to find the 

dominance frontier mapping RDF for RCFG 

for each node X do CD(X) c.0 end 
for each node Y do 

for each X E RDF(Y) do 
CD(X) +&D(X) U {Y} 

end 
end 

Figure 6. Algorithm for Computing the Set CD(X) of 
Nodes Control Dependent on X 

Node 
Entry 

1 
2 
3 
4 
6 
6 
7 
8 
9 

10 
11 
12 

CD(Node) 
1,2,8,9,11,12 

3,6,7 
4,5 

10 

9,li 
2,8,9,11 

Figure 7. Control Dependences of Program in Figure 1 

We now compare previous work on computing control 
dependences with our new algorithm. Control dependences 

32 



are computed in [FOW87], but that algorithm as stated 
uses quadratic space for intermediate computations and 
multiple passes over the dominator tree. An earlier 
version [CF87b] of our algorithm was formulated for control 
dependeces along, with no reference to other uses of dom- 
inance frontiers. Control dependences are also computed 
in [HPR88], but only for programs restricted to the classical 
structured programming constructs. 

6 Analysis and Measurements 
The number of nodes that contain &functions for a variable 
V is a function of the program control flow structure and 
the assignments for V. Program structure alone determines 
dominance frontiers and the number of control dependence 
arcs. It is possible that dominance frontiers may be larger 
than necessary for computing &function locations for some 
programs, since the actual assignments are not taken into 
account. In this section, we prove that the size of the 
dominance frontiers is linear in the size of the program 
when control flow branching is restricted to if-then-else 
constructs and while-do 10ops.~ Such programs can be 
described by the grammar given in Figure 8. We also give 
experimental results that suggest that the behavior is linear 
for actual programs. 

<program> : : = <statement> 
<statement> : : = CstatementXstatementD 
<statement> ::= if <predicate> 

then <statement> 
else <statement> 

(I> 
(2) 
(3) 

<statement> : := while <predicate> (4) 
do <statement> 

<statement> ::= <variable> c <expression> (5) 

Figure 8. Grammar for Control Structures 

Theorem 4 For programs comprised of straight-line code, 
if -then-else, and while-do constructs, the dominance 
frontier of any CFG node contains at most two nodes. 

Proof. Consider a top-down parse of a program using 
the grammar shown in Figure 8. Initially, we have a 
single <program> node in the parse tree and a control flow 
graph CFG with two nodes and one edge: Entry --f Exit. 
The initial dominance frontiers are DF(Entry) = 0 = 
DF(Exit). For each production, we consider the associated 
changes to CFG and to the dominance frontiers of nodes. 
We show that each CFG node S corresponding to an 
unexpanded <statement> symbol has at most one node 
in its dominance frontier. When a production expands a 
nonterminal parse tree node, a new subgraph is inserted 
into CFG in place of S. In this new subgraph, a CFG 
node T that corresponds to a terminal symbol has at most 
two nodes in its dominance frontier. 

(1:) This production adds a CFG node S and edges 
Entry + S + Exit, yielding DF(S) = {Exit}. 

- 

:‘We assume expressions and predicates perform no internal 
branching. 

(2) 

(3) 

.(4) 

(5) 

When this production is applied, a CFG node S is 
replaced by two nodes S1 and Sz. Edges previously 
entering and leaving S now enter .!?I and leave Sz. 
A single edge is inserted from Si to S2. Although 
the control flow graph has changed, consider how 
this production affects the dominator tree. Nodes Si 
and ,132 dominate all nodes that were dominated by 
S. Additionally, Si dominates SZ. Thus, we have 
DF(&) = DF(S) = DF(S2). 

When this production is applied, a CFG node S is 
replaced by nodes Tif, &he,, , SelJe, and Tendif. Edges 
previously entering and leaving S now enter Ti/ and 
leave T,,dif . Edges are inserted from Tit to both 

&hen and &lse; edges are also inserted from St&-s and 
S else to Tendij . In the dominator tree, Tij and Tendif 
both dominate all nodes that were dominated by S. 
Additionally, Tij dominates Sthen and Serse. By the ar- 
gument made for production (21, we have DF(Tif) = 
BP(S) = DF(T,ndif ). Now consider nodes &hen and 
S else. From the definition of dominance frontier, we 
obtain DF(Sth,,) =’ DF(S,I,,) = {Tendi,}. 

When this production is applied, a CFG node S is 
replaced by nodes Twj,ile and S&. All edges previously 
associated with node S are now associated with node 
T while- Edges are inserted from T,hile to S& and 
from S& to Twhile- Node Twhile dominates all nodes 
that were dominated by node S. Additionally, Tuj,ile 
dominates Sdo. Thus, we have DF(T!hire) = DF(S)U 

{While} and DF(Sd,) = {T’hile}. 

After application of this production, the new control 
flow graph is isomorphic to the old graph. 

Thus, each production causes a CFG node to be 
replaced by a new subgraph. In the new subgraph, only a 
Twhile node may have more than one node in its dominance 
frontier. Such a node will never be expanded to a subgraph, 
so each node in the final CFG has at most two nodes in its 
dominance frontier. CI 

Corollary 2 For programs comprised of straigh t-line code, 
if-then-else, and while-do constructs, every node is 
control dependent on at most two nodes. 

Proof. Consider a program P composed of the allowed 
constructs, and its associated control flow graph CFG. The 
reverse control flow graph RCFG is itself a structured 
control flow graph for some program P’. For all Y in 
RCFG, DF(Y) contains at most two nodes by Theorem 4. 
By Corollary 1, Y is then control dependent on at most two 
nodes. 0 

Unfortunately, these linearity results do not hold for 
all program structures. In particular, consider the nest of 
repeat-until loops illustrated in Figure 1. For each loop, 
the dominance frontier of a node in that loop includes each 
of the entrances to surrounding loops. For n nested loops, 
this leads to a dominance frontier mapping whose total size 
is O(n2), yet each variable needs at most O(n) &functions. 
Most of the dominance frontier mapping is not actually 
used in placing +-functions, so there is a concern that the 



computation of dominance frontiers might take excessive 
time with respect to the resulting number of actual + 
functions. We therefore wish to measure the number of 
dominance frontier nodes as a function of program size over 
a diverse set of programs. 

We implemented our dominance frontier algorithm 
and executed it against the FORTRAN routines in EIS- 
PACK [SBD+76]. W e c h ose such routines because they 
contain irreducible intervals and other unstructured con- 
structs. We implemented oulr algorithm in the PTRAN 
system, which already offered the required data flow and 
control flow analysis [ABC+88]. For the 61 programs we 
tested, the ratio of dominance frontier arcs to program size 
varied from 1.3 to 2.4. As the plot in Figure 9 shows, the 
size of the dominance frontier mapping appears to vary 
linearly with program size. 

800 

700 ** 

600 
* 

* 

* 
500 

* * 

400 
* 

* 
* 

* 

“” 0 100 200 400 

Figure 9. Size of Dominance Frontier Mapping Figure 11. Size of Control Dependence Graph 

vs. Number of Program Statements vs. Number of Program Statements 

Our next concern is that the number of d-functions 
might be nonlinear in the size of the original program. For 
the programs we tested, the plot in Figure 10 confirms 
linear behavior for &functions .with respect to program size. 

The remaining concern is that the control dependence 
graph might be nonlinear in the size of the original program. 
For the programs we tested, the plot in Figure 11 confirms 
linear behavior for control dependence arcs with respect to 
program size. 

Comparing Figures 9 and 11, we find that the same set 
of programs produced more dominance frontier relation- 
ships than control dependence relationships. Informally, 
dominance frontier relationships are due to joins in the 
control flow graph, but control dependence relationships 
result from forks in the control flow graph. The prevalent 
style of coding in our test suite resulted in control flow 
graphs with some nodes of high indegree and while most 
nodes have a low outdegree. 

* 

* 

700 

600 

500 

400 

5 * 
9* * * ** 

+ * 

* * * 

* * * 

Figure 10. Number of &functions 
vs. Number of Program Statements 

600 ** 
* * 

500 * *; 

OI 
0 100 200 300 400 

7 Conclusion 

Recent previous work has shown that SSA form and control 
dependences can support powerful code optimizations algo- 
rithms that are highly efficient in terms of time and space 
bounds based on the size of the program after translation 
to the forms. We have shown that this translation can 
be performed efficiently, that it leads to only a moderate 
increase in program size, and that applying the early steps 
in the SSA translation to the reverse graph is an efficient 
way to compute control dependences. This is strong 
evidence that SSA form and control dependences form a 
practical basis for optimization. 

Acknowledgements 

We would like to thank Fran Allen, Julian Padget, and Tom 
Reps for helpful comments. 

34 



References 

[ABC+881 

[AJ88] 

[AWZ88] 

[CF87a] 

[CF87b] 

[CLZ86] 

[FClW87] 

[Ha.r85] 

[HF’R88] 

[LT79] 

[RI,861 

[~T82] 

[RWZSS] 

[SBD+76] 

F. E. Allen, M. Burke, P. Charles, R. Cytron, 
and J. Ferrante. An overview of the PTRAN 
analysis system for multiprocessing. Journal Of 

Parallel and Distributed Computing, 5:617-640, 
October 1988. 

J. R. Allen and S. Johnson. Compiling c for 
vectorization, parallelization and inline expan- 
sion. Proc. SIGPLAN’88 Symp. on Compiler 
Construction, 23(7):241-249, June 1988. 

B. Alpern, M. N. Wegman, and F. K. Zadeck. 
Detecting equality of values in programs. Conf 
Rec. Fifteenth ACM Symp. on Principles of 
Programming Languages, January 1988. 

R. Cytron and J. Ferrante. An improved control 
dependence algorithm. Technical Report RC 
13291, IBM, 1987. 

R. Cytron and J. Ferrante. What’s in a name? 
Proc. 1987 International Conf. on Parallel Pro- 
cessing, pages 19-27, August 1987. 

R. Cytron, A. Lowry, and F. K. Zadeck. Code 
motion of control structures in high-level lan- 
guages. Conf. Rec. Thirteenth ACM Symp. 
on Principles of Programming Languages, pages 
70-85, January 1986. 

J. Ferrante, K. J. Ottenstein, and J. D. Warren. 
The program dependence graph and its use in 
optimization. ACM pans. on Programming 
Languages and Systems, 9(3):319-349, July 
1987. 

D. Harel. A linear time algorithm for finding 
dominators in flow graphs and related problems. 
Proc. Seventeenth ACM Symp. on Theory of 
Computing, pages 185-194, May 1985. 

S. Horwitz, J. Prins, and T. Reps. Integrating 
non-interfering versions of programs. Conf. Rec. 
Fifteenth ACM Symp. on Principles of Pro- 
gramming Languages, pages 133-145, January 
1988. 

T. Lengaurer and R. E. Tarjan. A fast algo- 
rithm for finding dominators in a flowgraph. 
ACM Trans. on Programming Languages and 
Systems, 1(1):121-141, July 1979. 

J. H. Reif and H. R. Lewis. Efficent symbolic 
analysis of programs. J. Computer and System 
Sciences, 32(3):280-313, June 1986. 

J. H. Reif and R. E. Tarjan. Symbolic program 
analysis in almost linear time. SIAM J. Com- 
puting, 11(1):81-93, February 1982. 

B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 
Global value numbers and redundant compu- 
tations. Conf. Rec. Fifteenth ACM Symp. on 
Principles of Programming Languages, January 
1988. 

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. 
Garbow, Y. Ikebe, V. C. Klema, and C. B. 

[SS70] 

[Tar741 

[WZ85] 

[WZ88] 

Moler. Matrix Eigensystem Routines - Eispack 
Guide. Springer-Verlag, 1976. 

R. M. Shapiro and H. Saint. The representation 
of algorithms. Technical Report CA-7002-1432, 
Massachusetts Computer Associates, February 
1970. 

R. E. Tarjan. Finding dominators in directed 
graphs. SIAM J. Computing, 3(1):62-89, 1974. 

M. N. Wegman and F. K. Zadeck. Constant 
propagation with conditional branches. Conf. 
Rec. Twelfth ACM Symp. on Principles of Pro- 
gramming Languages, pages 291-299, January 
1985. 

M. N. Wegman and F. K. Zadeck. Constant 
propagation with conditional branches. Tech- 
nical Report CS-88-02, Dept. of Computer Sci- 
ence, Brown U., February 1988. 

35 


