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1. Introduction

We believe that optimizing compilers should treat

the machine-independent optimizations (e.g., conditional

constant propagation, global value numbering) and code

motion issues separately.’ Removing the code motion

requirements from the machine-independent optimiza-

tion allows stronger optimizations using simpler algo-

rithms. Preserving a legal schedule is one of the prime

sources of complexity in algorithms like PRE [18, 13] or

global congruence finding [2, 20].

We present a straightforward near-linear-time2 al-

gorithm for performing Global Code Motion (GCM).

Our GCM algorithm hoists code out of loops and pushes

it into more control dependent (and presumably less fre-

quently executed) basic blocks. GCM is not optimal in

the sense that it may lengthen some paths; it hoists con-

trol dependent code out of loops. This is profitable if the

loop executes at least once; frequently it is very profit-

able. GCM relies only on dependence between instruc-

tions; the original schedule order is ignored. GCM

moves instructions, but it does not alter the Control Flow

Graph (CFG) nor remove redundant code. GCM benefits

from CFG shaping (such as splitting control-dependent

edges, or inserting loop landing pads). GCM allows us

to use a simple hash-based technique for Global Value

Numbering (GVN).

i Thl~ work has ~n supported by ARPA through ONR want Noool 4-91-
J-1989 and was done at the Rice University Computer Science Depar%

ment

‘ Modern microprocessors with super-scalar or VLIW execution already
reqmre global scheduhng,

2 We recpure a dominator tree, which requires O(cc(rz,n)) rime m build It is

essentially linear in the size of the control flow graph, and very fast to build
in practice.
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GVN attempts to replace a set of instructions that

each compute the same value with a single instruction.

GVN finds these sets by looking for algebraic identities

or instructions that have the same operation and identical

inputs. GVN is also a convenient place to fold constants;

constant expressions are then value-numbered like other

expressions. Finding two instructions that have the same

operation and identical inputs is done with a hash-table

lookup. In most programs the same variable is assigned

many times; the requirement for identical inputs is a re-

quirement for identical values, not variable names.

Hence GVN relies heavily on Static Single Assignment

(SSA) form [12]. GVN replaces sets of value-equivalent

instructions with a single instruction, however the single

replacement instruction is not placed in any basic block

(alternatively, think of GVN selecting a block at random;

the resulting program is clearly incorrect). A following

pass of GCM selects a correct placement for the instruc-

tion based solely on its dependence edges. Since GCM

ignores the original schedule, GVN is not required to

build a correct schedule. Finally, GVN is fast, requiring

only one pass over the program.

1.1 Related Work

Loop-invariant code motion techniques have been

around awhile [1]. Aho, Sethi, Unman present an algo-

rithm that moves loop-invariant code to a pre-header

before the loop. Because it does not use SSA form sig-

nificant restrictions are placed on what can be moved.

Multiple assignments to the same variable are not be

hoisted. They also lift the profitability restriction, and

allow the hoisting of control dependent code, They note
that lifting a guarded division may be unwise but do not

present any formal method for dealing with faulting in-

structions.

Partial Redundancy Elimination (PRE) [18, 13] re-

moves partially redundant expressions when profitable.

Loop-invariant expressions are considered partially re-

dundant, and, when profitable, will be hoisted to before
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the loop. Profitable in this case means that no path is

lengthened. Hoisting a computation that is used on some

paths in a loop but not all paths may lengthen a path, and

is not hoisted. GCM will hoist such control-dependent

expressions. In general this is very profitable. However,

like all heuristics, this method sometimes lengthens pro-

grams.

GCM will move code from main paths into more

control dependent paths. The effect is similar to Partial

Dead Code Elimination [16]. Expressions that are dead

on some paths but not others are moved to the latest point

where they dominate their uses. Frequently this leaves

no partially dead code.

GVN is a direct extension of local hash-table-based

value-numbering techniques [1, 11]. Since it is global

instead of local, it finds all the redundant expressions

found by the local techniques. Local value-numbering

techniques have been generalized to extended basic

blocks in several compilers.

GVN uses a simple bottom-up technique to build

partitions of congruent expressions. Alpern, Wegman

and Zadeck present a technique for building partitions

top-down [2]. Their method will find congruences

amongst dependence that form loops. Because GVN is a

bottom-up technique it cannot find such looping congru-

ences. However, GVN can make use of algebraic identi-

ties and constant folding, which AlW/Z’s technique can-

not. Also GVN runs in linear time with a simple one-

pass algorithm, while A/W/Z use a more complex O(rt

log n) partitioning algorithm. Cliff Click presents ex-

tensions to A/W/Zs technique that include algebraic

identities and conditional constant propagation [10].

While this algorithm finds more congruences than GVN

it is quite complex. Compiler writers have to trade off

the expected gain against the higher implementation

cost.

PRE finds lexical congruences instead of value cori-

gruences [18, 13]. As such, the set of discovered congru-

ences (whether they are taken advantage of or not) only

partially overlaps with GVN. Some textually-congruerlt

expressions do not compute the same value. However,

many textually-congruent expressions are also value-

congruent. Due to algebraic identities, many value cong-

ruences are not textually equal. In practice, GVN finds

a larger set of congruences than PRE.

Rosen, Wegman and Zadeck present a method for

global value numbering [19]. Their technique and the

one presented here find a near] y identical set of redun-

dant expressions. However, the algorithm presented here

is simpler, in part, because the scheduling issues are

handled by GCM. Also GVN works on irreducible

graphs; the R/WIZ approach relies heavily on program

structure.

For the rest of this section we will discuss the inter-

mediate representation used throughout the paper. We

present GCM next, in Section 2, both because it is useful

as an optimization by itself and because GVN relies on it,

In Section 3 we present our implementation of GVN. In

Section 4 we present numerical results showing the

benefits of the GVN-GCM combination over more tradi-

tional techniques (e.g., PRE).

1.2 Program Representation

We represent programs as CFGS, directed graphs

with vertices representing basic blocks, and edges repre-

senting the flow of contro13 [1]. Basic blocks contain

sequences of instructions, elementary operations close to

what a single functional unit of a machine will do. In-

structions are represented as assignments from simple

(single operator) expressions (e.g., “a := b + c“). We

require the program to be in SSA form [12].

We make extensive use of use-clef and clef-use

chains. Use-clef chains are explicit in the implementa-

tion. All variables are renamed to the address of the

structure that represents the defining instruction; essen-

tially variable names in expressions become pointers to

the expression that defines the variable. This converts

sequences of instructions into a directed graph, with the

vertices being instructions and the edges representing

data flow. It is not a DAG because SSA ~-functions are

handled like other expressions and can have backedges as

inputs. This is similar in spirit to the value graph [2] or

an operator-level Program Dependence Graph [15]. In

order to make the representation compositional [8], we

need a $-function input that indicates under what condi-

tions values are merged. It suffices to make @functions

keep a pointer to the basic block they exist in. We show

an example in Figure 1.

Both GCM and GVN rely solely on dependence for

correct behavior, the original schedule is ignored

(although it may be used as an input to the code-

placement heuristic). To be correct, then, all depend-

ence must be explicit. LoAos and STORES need to be

threaded by a memory token or other dependence

edge [3, 15, 23]. Faulting instructions keep an explicit

control input. This input allows the instruction to be

scheduled in its original basic block or after, but not be-

fore.

Most instructions exist without knowing the basic

block they started in,4 Data instructions are treated as

not residing in any particular basic block. Correct behav-

ior depends solely on the data dependence. An instruc-

3 Our implementation treats basic blocks as a special kind of instruction
smular to Ferrante, Ottenstein and Warren’s regwn nodes [151. This
allows us to simplifi several optimization algorithms unrelated to this

~aper. Our presentation will use the more traditional CFG.
The exceptions are instructions which can cause exceptions: loads, stores,

division, subroutine catls, etc.
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Start: “ :–

1

loop:

b:=a+l

iz:=il+b

c:=i2X2

cc := i2 < 10

br ne loop

mio ‘T
I / 1

m

\

Figure 1 A loop, and the resulting graph to be scheduled

tion, the instructions that depend on it, and the instruc- 4. Schedule all instructions late. We place instruc-

tions on which it depends exist in a “sea” of instructions,

with little control structure.

The “sea” of instructions is useful for optimization,

but does not represent any traditional intermediate repre-

sentation such as a CFG. We need a way to serialize the

graph and get back the CFG form. We do this with a

simple global code motion algorithm.

The global code motion algorithm “schedules” the

“free-floating” instructions by attaching them to the

CFG’S basic blocks. It must preserve any existing control

dependence (divides, subroutine calls and other possibly

faulting operations keep a dependence to their original

block) and all data dependence. While satis~lng these

restrictions the scheduler uses a flexible and simple heu-

ristic: place code outside as many loops as possible, then

on as few execution paths as possible.

2. Global Code Motion

We use the following basic strategy:

1. Find the CFG dominator tree, and annotate basic

blocks with the dominator tree depth.

2. Find loops and compute loop nesting depth for
each basic block.

3, Schedule (select basic blocks for) all instructions

early, based on existing control and data depend-

ence. We place instructions in the first block

where they are dominated by their inputs. This

schedule has a lot of speculative code. with ex-

tremely long live ranges.

tions in the last block where they dominate all

their uses.

5, Between the early schedule and the late schedule

we have a safe range to place computations. We

choose the block that is in the shallowest loop nest

possible, and then is as control dependent as pos-

sible.

We cover these points in more detail in the sections

that follow. We will use the loop in Figure 1 as a run-

ning example. The code on the left is the original pro-

gram. On the right is the resulting graph (possibly after

optimization), Shadowed boxes are basic blocks,

rounded boxes are instructions, dark lines represent con-

trol flow edges, and thin lines represent data-flow (data

dependence) edges.

2.1 Dominators and Loops

We find the dominator tree by running Lengauer and

Tarjan’s fast dominator finding algorithm [17], We find

loops using a slightly modified Tarjan’s “Testing flow

graph reducibility” [21 ], Chris Vick has an excellent

write-up of the modifications and on building the loop

tree [22]. We used his algorithm directly.

The dominator tree and loop nesting depth give us a

handle on expected execution times of basic blocks. We

use this information in deciding where to place instruc-

tions in the following sections. The running time of

these algorithms is nearly linear in the size of the CFG.

In practice, they can be computed quite quickly. We

show the dominator tree and loop tree for our running

example in Figure 2.
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CFG Dominator Loop

Tree Tree

Figure 2 CFG, dominator tree and loop tree

2.2 Schedule Early

Our first scheduling pass greedily places instructions

as early as possible. We place instructions in the first

block where they are dominated by their inputs.5 The

only exception is instructions that are “pinned” into a

particular block because of control dependence. These

include PHI instructions, BRANCH/JUMP, STOP/RETUE~N

instructions (these end specific blocks). Faulting in-

structions have an explicit control input, so they cannot

be moved before their original basic block.6 This sched-

ule has a lot of speculative code, with extremely long live

ranges.

We make a post-order DFS over the inputs, starting

at instructions that already have a control dependence

(“pinned” instructions). After scheduling all inputs to an

instruction, we schedule the instruction itself. We place

the instruction in the same block as its deepest domina-

tor-tree depth input. If all input definitions dominate the

instruction’s uses, then this block is the earliest correct

location for the instruction.

forall instructions i do
if i is pinned then II Pinned instructions remain

i.visit := True; II . . . in their original block

forall inputs x to i do II Schedule inputs to pinned

Schedule_Early( x ); II... instructions

II Find earliest legal block for instruction i

Schedule_Early( instruction i ) {
if i. visit = True then II Instruction is already

return; II ... scheduled early?

i. visit:= True; II Instruction is being visited now

i. block;= roo~ II Start with shallowest dominator

forall inputs x to i do II
Schedule_Early( x ); II Schedule all inputs early

if i. block .dom_depth <x. block .dom_depth then
i. block:= x. block; II Choose deepest dominator input

1

5 For some apphcatlons (e.g., trace scheduhng) the algorithm is not greedy

enough. It does not move instmctions past $-functions.

6 They can move after their original block, which only preserves partial

correctness.

1. int first:= TRUE, x, sumo:= O;

2. while( predo ) {

2.1 suml := +( sumo, sumz );

3. if( first )

4. {first:= FALSE; X:= ..,; ]

5.1 sumz := sum I +x,

5.2 )

c11

b
2

3

4

5
CFG

8

1

2

h354

Dominator

Tree
u

Figure 3 x’s definition does not dominate it’s use

One final problem: it is easy (and occurs in practice)

to write a program where the inputs do not dominate all

the uses. Figure 3 uses x in block 5 and defines it in

block 4. The dominator building algorithm assumes all

execution paths are possible; thus it may be possible to

use x without ever defining it. When we find the block of

the ADD instruction in line 5.1, we discover the deepest

input comes from the assignment to x in block 4 (the

other input, sum], comes from the PHI in block 2). Plac-

ing the ADD instruction in block 4 is clearly wrong; block

4 does not dominate block 5.

Our solution is to observe that translation to SSA

leaves in some “extra” PHI instructions, We show the

same code in Figure 4, but with the extra PHI instructions

visible. In essence, the declaration of X. initializes it to

the undefined value T,7 This value is then merged with

other values assigned to x, requiring PHI instructions for

the merging. These PHI instructions dominate the use of

x in block 5,

This problem can arise outside loops as well. In

Figure 5, the PHI instruction on line 3 is critical. With

the PHI instruction removed, the computation of ~(x) on

line 4 will be scheduled early, in block 2. However,

block 2 does not dominate block 4, and y is live on exit

from block 4. In fact, there is no single block where the

inputs to ~ dominate ~s uses, and thus no legal schedule.

The PHI instruction tells us that it’s all right; the pro-

grammer wrote code such that it appears that we can

reach ~ without first computing it’s inputs,

7 Pronounced “top”; this notation is taken from the literature on constant

propagation.
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1. intfht:= TRUE, xo:= T, sumo”= 0;
2. while( p-edo ) {
2. I sum] := $( Surno, sun’n );

2.2 xl := $( X(),x3);

3. if(fzrst )

4, { first:= FALSE; X2 := ..; ]

5. X3 := $( xl, x2);

5.1 sumz := suml + X3;

5.2 }

B
2

3

4

5 CFG

$
1

2

!iitl3

54

Dominator

Tree
-

Figure 4 Now x’s definitions dominate it’s uses

These PHI instructions cannot be removed. They hold

critical information on where the programmer has as-

sured us that values will be available. In our implemen-

tation of GVN, the optimization that would remove this

PHI instruction is the one where we make use of the fol-

lowing identity: x =$(x, T). We ignore this identity.

In Figure 6, scheduling early moves the add ‘% := a

+ 1“ out of the loop, but it moves the multiply “c := iz x

2“ into the loop. The PHI instruction is pinned into the

block, The add “iz := i, + b“ uses the PHI, so it cannot be

scheduled before it. Similarly, the multiply and the com-

pare use the add, so they cannot be placed before the

loop. The constants are all hoisted to the start of the pro-

gram.

2.3 Schedule Late

Scheduling early hoists code too much. Much of the

code is now speculative, with long live ranges. Witness

the constants in Figure 6. They are all hoisted to the

start of the program, no matter where their first use is.

To correct this, we also schedule late: we find the last

place in the CFG we can place an instruction. Between

the early schedule and the late schedule will be a legal
range to place the instruction.

We want to find the lowest common ancestor (LCA)

in the dominator tree of all an instruction’s uses. Find-

ing the LCA could take O(n) time for each instruction,

but in practice it is a small constant. We use a post-order

DFS over uses, starting from the “pinned” instructions.

After visiting (and scheduling late) all of an instruction’s

children, we schedule the instruction itself. Before

scheduling, the instruction is in its earliest legal block;

1. int xo := T, zo := ....

1.1 if( sometimeo )

2. xl:= ...;

3. x,:= $( X(),xl );

3.1 if( sometime_latero )

4. y := Z()+f(x2);

5, ... ...Y

P
1

2

3 &
1

32

54

P4

5 CFG

Dominator

Tree

Figure 5 The PHI instruction on line 3 is critical

Start:

m10 a READ() 1 )

i. [
[

\

X_

loop:

v /

‘=”

Figure 6 Our loop example, after scheduling early

LEY!Y2L
I / I

1 / I

—
the LCA of its uses represents its latest legal block. The

earliest block dominates the latest block (guaranteed by

the PHI instructions we did not remove). There is a line

in the dominator tree from the latest to the earliest block;

this represents a safe range where we can place the in-

struction. We can place the instruction in any block on

this line. We choose the lowest (most control dependent)

position in the shallowest loop nest.

For most instructions, uses occurs in the same block

as the instruction itself. For PHI instructions, however,

the use occurs in the previously block of the correspond-
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ing CFG edge. In Figure 5 then, the use of XOoccurs in

block 1 (not in block 3, where the@ is) and the use of xl

occurs in block 2.

forall instructions i do
if i is pinned then II Pinned instructions remain

i. visit:= True; II . in their original block

forall usesy of i do II Schedule pinned insts outputs

Schedule_Late( y );

//Find latest Iegat block for instruction i

Schedule_Late( instruction i ) {

if i. visit= True then

return;
i. visit:= True;

Block lca := NU~,

forall uses y of i do {
Schedule_Late( y );
Block use := y.block;

if y is a PHI then {

It’Instruction is already

II ... scheduled late?

II Instruction is being visited now

II Start the LCA empty

II Schedule all uses first

II Schedule all inputs late

// Use occurs in y’s block

// .. except for PHI instructions

II Reverse dependence edge from i toy

Pick j so that the jth input of y is i

II Use matching block from CFG

use := y.block. CFG_pred[j];

1
II Find the least common ancestor

lca := Find_LCA( lea, use );

1
..use the latest and earliest blocks to pick final position

1
We use a simple linear search to find the least corn-

mcm ancestor in the dominator tree.

II Least Common Ancestor

Block Find_LCA( Block a, Block b ) {

if( a = NULL) return b; // Trivial case
// While a is deeper than b go up the dom tree

while( a.dom_depth < b.dom_depth )
a := a.immediate_dominatou

II While b is deeper than a go up the dom tree

while( b.dom_depth e a.dom_depth )
b:= b.immediate_dominator;

while(a*b){ II While not equal

a := a.immediate_dominator; II.. .go up the dom tree

b := b.immediate_dominato~ II . .go up the dom tree

}
return a; II Return the LCA

)

2.4 Selecting a Block

In the safe range for an instruction we may have

many blocks to choose from. The heuristic we use is to

pick the lowest (most control dependent) position in the

shallowest loop nest. Primarily this moves computations

out of loops. A secondary concern is to move code off

frequently executed paths into if statements. In Figure 5,

if the computation of Z. in block 1 is only used in block 4
then we would like to move it into block 4.

When we select an

affect other instructions’

instruction’s final position we

latest legal position. In Figure

7, when the instruction “b := a + 1“ is scheduled before

the loop, the latest legal position for”1” is also before the

loop. To handle this interaction, we select instructions’

final positions while we find the latest legal position.

Here is the code to select an instruction’s final position:

.,. Found the LCA, the latest legal position for this inst.

. We already have the earliest legal block.

Block best:= lea; // Best place for i starts at the lca

while lcu # i.block do // While not at earliest block do...

if lca.loop_nest < best.loop_nest then
// Save deepest block at shallowest nest
best:= lea;

lca := lca.immediate_dominato~ // Go up the dom tree

)
i. block := bes~ II Set desired block

The final schedule for our running example is in

Figure 7. The MUL instruction’s only use was after the

loop. Late scheduling starts at the LCA of all uses (the

last block in the program), and searches up the domina-

tor tree for a shallower loop nest. In this case, the last

block is at nesting level O and is chosen over the original

block (nesting level 1). After the multiply is placed after

the loop, the only use of the constant 2 is also after the

loop, so it is scheduled there as well. The compare is

used by the IF instruction, so it cannot be scheduled after

the loop. Similarly the ADD is used by both the compare

and the PHI instruction.

3. Global Value Numbering

Value numbering partitions the instructions in a

program into groups that compute the same value. Our

technique is a simple hash-table based bottom-up

method [1 1]. We visit each instruction once, using a

hash-table to determine if the instruction should be in the

same partition as some previously visited instruction,

Previously this methed has been used with great success

for local value-numbering. We extend to global value-

numbering by simply ignoring basic block boundaries.

We use the following algorithm:

1) Visit every instruction using a reverse postorder

(RPO) walk over the dependency edges.

2) At each instruction attempt to fold constants, use

algebraic identities or find an equivalent instruction via a

hash-table lookup. The hash table allows us to assign the

same value-number to equivalent instructions in constant

time. The hash table is not reset at basic block bounda-

ries. Indeed, basic blocks play no part in this phase.

We use a IWO walk because, in most cases, the in-

puts to an instruction will have all been value-numbered

before value-numbering the instruction itself. The ex.
ceptions arise because of loops. Because we do not reach

a fixed point, running GVN a second time may be profit-

able. In our experience, one pass is usually sufficient.
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Start:

loop:

I

I@i” aADD b

1 / +/
v i’
PHI i]

\

15
iz ADD

> cc

BRANCH

J I I

Start: i. := O

a := reado

c1 := 1

b:=a+cl

Clo:= 10

loop: 3il :=$(io, iz)

i2:=i1+b

cc := iz < Clo

branch ne loop

I
1

TC’2 := 2

c:=i2xc2

return c

Figure 7 Our loop example, after scheduling late

3.1 Value-Numbering

Value-numbering attempts to assign the same value

number to equivalent instructions. The bottom-up hash-

table based approach is amenable to a number of exten-

sions, which are commonly implemented in local value-

number algorithms. Among these are constant folding

and recognizing algebraic identities. When we value-

number an instruction, we perform the following tasks:

1) Determine if the instruction computes a constant

result. If it does, replace the instruction with one that

directly computes the constant. Instructions that compute

constants are value-numbered by the hash table below, so

all instructions generating the same constant will even-

tually fold into a single instruction.

Instructions can generate constants for two reasons:

either all their inputs are constant, or one of their inputs

is a special constant. Multiplication by zero is such a

case. There are many others and they all interact in

useful ways.g

2) Determine if the instruction is an algebraic iden-

tity on one of its inputs. Again, these arise for several

reasons; either the instruction is a trivial CoPY, or one

a By treating basic blocks as a special kind of instmction, we are able to

constant fold basic blocks like other instructions. Constant folding a basic
block means removmg constant tests and unreachable control flow edges,

which m turn simplifies the dependent o-functions

input is a special constant (add of zero) or both inputs are

exactly the same (the t) or MAX of equal value;). We

replace uses of such instructions with uses of the copied

value. The current instruction is then dead and can be

removed.

3) Determine if the instruction computes the same

value number as some previous instruction. We do this

by hashing the instruction’s operation and inputs (which

together uniquely determine the value produced by the

instruction) and looking in a hash table. If we find a hit,

then we replace uses of this instruction with uses of the

previous instruction. Again, we remove the redundant

instruction. If the hash table lookup misses, then the

instruction computes a new value. We insert it in the

table. Commutative instructions use a hashing (and

compare) function that ignores the order of inputs.

While programmers occasionally write redundant

code, more often this arises out of a compiler’s fi-ont end
during the conversion of array addressing expressions

into machine instructions.

3.2 Example

We present an extended example in Figure 8, which

we copied from the Rosen, Wegman and Zadeck example

[19]. The original program fragment is on the

the SSA form is on the right. We assume every

left and

original



1 I
l:=cxb d:=c
m:=l+4 l:=dxb

a;=c s:=axb

t:=s i-1

x:=axb

y:=x+l I

read(ao, bo,co, do, lo, mo, so, to)
I

al :=$( ao, a3)

dl :=$( do, d3)

ml := O( mo, m3)

s, := @( so, S3)

L
11 := coX b. dz := CO

m2:=ll+4 12 := d2 X b.

a2 := co S2:= al X b.

tz :=s2+1

a3 := $( a2, al)

d3 := @( dl, d2)

13 := ~ 1,, 12)

m3 := $( mz, ml)

S3 := @( .$1,SJ

ts := ~ tl, tJ

X. := a3 x b.

yo:=xo+l

Figure 8 A larger example, also in SSA form

variable is live on exit from the fragment. For space rea-

sons we do not show the program in graph form.

We present the highlights of running GVN here.

We visit the instructions in reverse post order. The

reado call obviously produces a new value number. The

~-functions in the loop header block (al, d,, rm, SI, and

tl) are not any algebraic identities and they do not conn-

pute constants. They all produce new value numbers, as

does “11 := co x bo” and “mz := 11 + 4“. Next az is an

identity on co. We follow the clef-use chains to remap

uses of a2 into uses of CO.

Running along the other side of the conditional we

discover that we can replace d2 with co. Then “12 := co x

bo” has the same value number as 11and we replace uses

of 12with 11. The variables S2and t2produce new values.

In the merge after the conditional we find “13 := ~(11, lJ”,

which is an identity on 11. We replace uses of 13occur-

ring after this code fragment with 11. The other $-

functions all produce new values. We show the resulting

program in Figure 9. At this point the program is incor-
rect; we require a round of GCM to move “1, := co x bo”

to a point that dominates its uses.

GCNl moves the computations of 11, mz, XO, and ,YO

out of the loop. The final code, still in SSA form, is

shown on the right. Coming out of SSA form requires a

new variable name as shown on the right in Figure 9.

4. Experiments

We converted a large test suite into a low-level in-

termediate language, lLOC [6, 5]. The ILOC produced by

translation is very naive and is intended to be optimized.

We then performed several machine-independent optimi-

zation at the ILOC level. We ran the resulting lLOC on a

simulator to collect execution cycle counts for the lLOC

virtual machine. All applications ran to completion on

the simulator and produced correct results.

ILOC is a virtual assembly language. The current

simulator defines a machine with an infinite register set

and 1 cycle latencies for all operations, including Lo~s,

STORESand JUMPS. A single register can not be used for

both integer and floating-point operations (conversion

operators exist). ILOC is based on a load-store archi-

tecture; there are no memory operations other than LOAD

and STORE. ILOC includes the usual assortment of logi-

cal, arithmetic and floating-point operations.

The simulator is implemented by translating ILOC

into C. The C code is then compiled and linked as a na-
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read(ao, bo,Co,do,lo,rno,,so,to)
I

+*
al :=$( ao, a3)

d, := ()( do, dJ

ml := $( mo, ms)

J-1:=0( ~o, S3)

t, := $( to, f3)

1, := co x b~ I S2:=al X bo

m2 :=11+4 tz:=sz+l

a3 := $( co, al)

d3 := 1$( dl, co)

ms := 4( m2., ml)

s,:= +( s,, s,)

t~ := $( t~, tJ

Xo := a3 x b.

ylj:=xo+l

read(ao, bo, co, do, l., mo, so, to)

~1 := Co X b.

m2;= 11+4

read(a, b, c, d, 1,m,s, t)

l:=cxb

m2:=l+4

v v

al :=+( ao, as)

dl := ()( do, d3)

ml := $( mo, ms)

S1 := Q( so, S3)

t] := O( to,t3)

S2 := al x b.

tz:=sz+l

a3 := $( co, al)

d3 := $( dl, Co)

m3 := $( mz, ml)

S3 := ($( s], SJ

tq := ($( tl, tJ

m

v v

a:=c s:=axb

m := m2 t:=s+l

d:=c

7x:=axb

y:=x+l

1,, . . . .

Figure 9 After GVN on the left, after GCM in the middle, back out of SSA form on the right

internally with a naive translation out of SSA at the end.tive program. The executed code contains annotations

that collect statistics on the number of times each ILOC

routine is called and the dynamic cycle count.

The simulated ILOC clearly represents an unrealistic

machine model. We argue that while the simulation is

overly simplistic, it makes measuring the separate effects

of optimizations possible. We are looking at machine-

independent optimization, Were we to include memory

hierarchy effects, with long and variable latencies to

memory and a fixed number of functional units we would

obscure the effects we are trying to measure.

4.1 The Experiments

The test suite consists of a dozen applications with a

total of 52 procedures. All the applications are written in

FORTRAN, except for cplex. Cplex is a large constraint

solver written in C. Doduc, tomcatv, matrix300 and

fpppp are from the Spec89 benchmark suite.9 The re-

maining procedures come from the Forsythe, Malcom

and Moler suite of routines [14].

All experiments start by shaping the CFG: splitting

control-dependent edges and inserting loop landing pads.

All experiments end with a round of Dead Code Elimi-

nation (DCE) [12]. Most of the phases use SSA form

Thus, most optimization insert a large number of copies,

We followed with a round of coalescing to remove the

copies [4, 9]. This empties some basic blocks that only

hold copies. We also split control-dependent blocks and

some of those blocks go unused. We ran a pass to re-

move the empty blocks. Besides the optimization al-

ready discussed, we also used the following:

CCP: Conditional Constant Propagation is an im-

plementation of Wegman and Zadeck’s algorithm [24].

It simultaneously removes unreachable code and replaces

computations of constants with load of constants. After

constant propagation, CCP folds algebraic identities that

use constants, such as x x 1 and x + O, into simple copy

operations.

GCF: Global Congruence Finding implements Alp-
ern, Wegman, and Zadeck’s global congruence finding

algorithm [2]. Instead of using dominance information,

available expressions (AVAIL) information is used to

remove redundant computations. AVAIL is stronger

than dominance, so more computations are removed [20].

PRE: Partial Redundancy Elimination implements

Morel and Renvoise’s algorithm. PRE is discussed in

Section 1.1.

9At the time, our tools were not up to handling the entue Spec suite,
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Reassociation: This phase reassociates and redis-

tributes integer expressions allowing other optirnizations

to find more loop invariant code [6]. This is important

for addressing expressions inside loops, where the rapidly

varying innermost index may cause portions of a con~-

plex address to be recomputed on each iteration. Reas-

sociation can allow all the invariant parts to be hoisted,

leaving behind only an expression of the form

“base+indexxstride” in the loop.

Our experiments all follow this general strategy:

1.

2.

3.

4.

5.

6.

Convert from FORTRAN or C to naive ILOC. Re-

shape the CFG.

Optionally reassociate expressions.

Run either GVN-GCM or run GCF-PRE-CCP

once or twice,

Clean up with DCE, coalescing and removing

empty blocks.

Translate the ILOC to C with the simulator, then

compile and link.

Run the compiled application, collecting statistics.

Variations on this Strategy- are outlined below in each

experiment.

4.2 GVN-GCM VS. GCF-PRE-CCP

We optimized with the GVN-GCM combination and

compared it to running one pass each of GCF, PRE and

CCP. This represents an aggressive optimization strat-

egy with reasonable compile times. Each of GCF, PRE

and CCP can find some congruences or constants that

GVN cannot. However, constants discovered with GVN

can help find congruences and vice-versa. The separate

passes have a phase-ordering problem; constants found

with CCP cannot then be used to find congruences with

PRE. In addition, GCM is more aggressive than PRE in

hoisting loop invariant expressions.

The table in Figure 10 shows the results. The first

two columns are the application and procedure name, the

next column shows the runtime cycles for GVN-GCM.

The fourth column is cycles for GCF-PRE-CCP. Per-

centage speedup is in the fifth column.

4.3 GVN-GCM vs. GCF-PRE-CCP repeated

We compared the GVN, GCM combination against

two passes of GCF, PRE and CCP. We ran DCE after

each set; the final sequence being GCF, PRE, CCP, DCE,

GCF, PRE and CCP. As before we finish up with a pass

of DCE, coalescing and removing empty blocks.

The sixth column in Figure 10 shows the runtime

cycles for the repeated passes and column seven shows

the percentage speedup over GVN-GCM. Roughly halve

the gain over a single pass of GCF-PRE-CCP is lost,

This indicates that the second pass of GCF and PRE

could make use of constants found and code removed by

CCP,

4.4 Reassociate, then GVN-GCM vs. GCF-PRE -CCP

We first reassociate expressions. Then we ran the

GVN-GCM combination and compared it to running one

pass of GCF, PRE and CCP. As before we finish up with

a pass of DCE, coalescing and removing empty blocks.

In Figure 10, column eighth is the runtime cycle

count for reassociating, then running the GVN-GCM

combination. Column nine is reassociation, then GCF-

PRE-CCP. Column ten is the percentage speedup. The

average speedup is 5.970 instead of 4.370. Reassociation

provides more opportunities for GVN-GCM than it does

for one pass of GCF, PRE and CCP.

4.5 Reassociate, then GVN-GCM vs. GCF-PRE -CCP

repeated

We first reassociate expressions. Then we ran the

GVN-GCM combination and compared it to running two

passes of GCF, PRE and CCP. The final sequence being

Reassociate, GCF, PRE, CCP, DCE, GCF, PRE and

CCP. As before we finish up with a pass of DCE, coa-

lescing and removing empty blocks,

Column eleven in Figure 10 shows the runtime cy-

cles for the repeated passes and column twelve shows the

percentage speedup over GVN-GCM. Again, roughly

halve the gain over a single pass of GCF-PRE-CCP is

lost. This indicates that the second pass of GCF and PRE

could make use of constants found and code removed by

CCP.

5. Conclusions

We have implemented two fast and relatively

straightforward optimization. We ran them both on a

suite of programs with good results. By separating the

code motion from the optimization issues we are able to

write a particularly simple expression of Global Value

Numbering. Besides finding redundant expressions,

GVN folds constants and algebraic identities. After

running GVN we are required to do Global Code A40-

tion. Besides correcting the scheduled produced by

GVN, GCM also moves code out of loops and down into

nested conditional branches.

GCM requires the dominator tree and loop nesting

depth, It then makes two linear-time passes over the

program to select basic blocks. Running time is essen-

tially linear in the program size, and is quite fast in

practice. GVN requires one linear-time pass over the

program and is also quite fast in practice. Together these

optimization provide a net gain over using GCF, PRE

and CCP, and are very simple to implement.
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Application
Routim

doduc parol

rkf45 rkfs

fpppp gamgen

doduc prophy

doduc pastern

doduc ddeflu

doduc yeh

doduc deblco

doduc deseco

doduc mtegr

doduc cardeb

doduc coeray

!doduc bilan

matrix300 sgemv
rkf45

doduc

doduc

fpppp

sewd

doduc

doduc

doduc
fpppp

doduc

doduc
urand

doduc
cplex

doduc

rkf45

initbx

dccera

twldrv

sphrte

heat

orgpar

drepvi
fmtgen

repvid

uudeb

urnnd

drrgl
xload

colbur

matrix300 sgemrtr

rkf45 fehl

cplex xaddrov

doduc si
cplex xielem

fpppp fmtset

doduc Supp
doduc iniset

fpppp fpppp

matrkx300 Saxpy
doduc subb

doduc x21y21

solve decomp

svd svd

cplex chpwot

zeroin zeroin

tomcatv tomcatv

fmin fmm
fpppp efill
doduc lhbtr

doduc saturr

TOTAL

Average

Reassociate Reassociate Reassociate

;VN-GCM GCF-PRE-CCP GCF-PRE-CCP GVN-GCM GCF-PRE-CCP GCF-PRE-CCP

Once speedup Repeated speedup Once speedup Repeated speedup

689,059 898,775 23.3% 821,399 16.1% 689,931 929,271 25.8% 8~4, J89 163%

536,685 637,325 15.8% 560,180 4,2% 513,005 689,495 25.6% 559,255 8.3%
56,024 66,254 15.4% 66,254 15.47. 58,945 61,654 4.4% 62,526 5.7%

134,227 158,644 15.4% 151,039 11,1% 79,057 102,630 23.070 83,032 4.8%
553,522 646,101 14 3% 590,164 6.2% 617,902 834,681 26.0% 648,916 4.8%
625,336 721,850 13.4% 654,365 4 d!io 598,399 769,328 22.2% 651,012 8.1%

1,329,989 1,485,024 10,4% 1,434,149 7,3% 1,332,394 1,541,800 13,6% 1,474,460 96%
342,460 379,567 9 8% 379,567 98% 342,460 362,090 54% 354,328 3.3%
479,318 529,876 9.59’. 497,174 3.6% 440,884 552,856 20.3% 508>216 13.2%

2,182,909 2,395,579 8.9% 2,249,694 3.070 2,175,324 2,671,044 18.6% 2,324,804 6.4%
389,004 426,138 8.7% 383,403 -1 5% 401,214 487,928 17.8% 391,913 -2,4%
168,165 183,520 8.4% 157,620 -6.7% 159,840 169,090 5.5% 151,330 -5 6%

1,487,040 1,622,160 8 3% 1,622,160 8 3% 1,487,040 1,606,384 7.4% 1,606,384
536,432

7.470
580,878 7.7% 545,127 1.6% 529,957 686,143 22,8% 582,127 9 o%

496,000 536,800 7,6% 536,400 7.5% 400,000 401,200 0 3% 400,400 0 1%
1,475 1,575 6.3% 1,575 6.3% 1,475 1,475 0.090 1,475 0.0%
2,602 2,776 6.3% 2,606 0.2% 2,558 3>091 17 2% 2,591 1 3%

921,068 981,505 6.2% 981,505 6.2% 921,068 975,215 5.6% 975>215 5.6%
?6,291,270 81,100,769 5.9% 80,988,348 5.8% 79,039,949 81,989,205 3,6% 81,464,531 3.0%

882 937 5 9% 937 5.9% 801 837 4,3% 829 34%
578,646 613,800 57% 613,800 5.7% 560,418 610,080 8.l% 608,964 8.0%

23,69’2 24,985 5.2% 24,060 1 5% 21,287 22,950 7.2% 21,840 2.5%
680,080 715,410 4.9% 689,325 1.3% 697,840 741,055 5.8% 720,890 3.2%
926,059 973>331 4 9% 966,891 42% 923,419 960,776 3,9% 952,581 3.1%
486,141 507,531 42% 492,837 1,4% 453,033 514,041 119% 496,557 8.8%

863 898 3.9% 838 -3.0% 735 877 16.2%

550
844 129%

563 2.3% 563 2 3% 555 564 1.6% 564 1,6%
295,501 301,516 2.0% 298,926 1.1% 297,334 347,379 14.4% 347,379 14.4%

3,831,744 3,899,518 1,7% 3,899,518 1,7% 3,831,744 3,899,518 17% 3,899,518 1,7%
751,074 763,437 1 6% 765,868 1 9% 761,478 804,580 5.4% 797,365 4.5%

8,664 8,767 1.2% 8,666 0 o% 7,928 8,022 1.2% 7,920 -o 1%
134,640 135,960 1.0% 134,640 0.0% 130,416 137,808 5.4% 137,808 5.4%

,6,345,264 16,487,352 0.9% 16,499,836 0.9% 15,539,173 16,487,352 5 8% 16,499,836 5.8%
9,924,360 9,981,072 0,6% 9,981,072 0 6% 9,300,548 9,470,684 1 8% 9.470,684 1 8%
9,738,262 19,791,979 0.3% 19,904,514 0.8% 19,755,998 19,718,353 -0.2% 19,956,683 1.0%

1,072 1,074 0.2% 1,074 0 2% 948 952 0.4% 952 0.4%
2,564,382 2,567,544 0.1% 2,567,544 0.1% 2,564,382 2,561,220 -o 1% 2,567,544 0 1%

56,649 56,684 0.1% 56,655 0,0% 47,316 47,498 0.4% 47,469 0 3%
!6,871,102 26,883,090 0 o% 26,877,096 0.0% 26,871,102 26,871,102 0.0% 26,865,108 0.09’0
3,340,000 13,340,000 0.0% 13,340,000 0 o% 10,480,000 10,480,000 0 o% 10,480,000 0 o%
1,763,280 1,763,280 0.0% 1.763,280 0.0% 1,763,280 1,763,280 0 o% 1,763,280 0 o%
l,~53,980 1,253,980 0.0% 1,355,263 7.5% 1,162,343 1,162,343 0.0% 1,162,343 0.0%

642 641 -0.2% 631 -1 7% 655 651 -0,6% 60 I -9 o%
4,596 4,542 -1.2% 4,547 -1.1% 4,612 4,407 -4.7% 4,135 -11.5’%

4,156,117 4,097,458 -1,4% 4,097,548 -1.4% 4,194,263 4,137,514 -1 4% 4,137,604 -1 4%
740 729 -1.5% 729 -1.5% 909 731 -24.4% 738 -23 2%

?485E+08 2,436E+08 -2 o% 2433E+08 -2 1% 1 952E+08 1,957E+08 0.3% 1,952E+08 0.0$%0
908 876 -3.7% 902 -0.7% 1,017 885 -14 9% 901 -12 9%

2,046,512 1,951,843 -4 9% 1,898,546 -7.8% 2,791,920 2,305,816 -21,1% 2,471,638 -13.0%
75,708 71,616 -5 7% 77,010 1.7’% 71,430 84,266 15 2% 79,9!38 10 7%
63,426 59,334 -6.9% 58,962 -7 6% 63,426 60,078 -5 6% 59,706 -6.Z?ZO

1.416E+08 4.432E+08 0.4% 4.423E+08 o 2% 3.873E+08 3,938E+08 1.6% 3.918E+08 1.1%
8,659,662 8,690,153 4 3% 8,672,843 24% 7,593,844 7,721.122 5,9% 7,681,987 2,2%

Figure 10 GVN-GCM vs. GCF-PRE-CCP

256



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

A. Aho, R,

Principles,

Bibliography

Sethi, and J. Unman. Compilers –

Techniques, and Tools. Addison-

Wesley, 1985. -

B. Alpern, M. N. Wegman, and F. K. Zadeck.

Detecting equality of variables in programs. In

Conference Record of the Fifteenth ACM Sympo-

sium on the Principles of Programming Lan-

guages, 1988.

R. A. Ballance, A. B. Maccabe, and K. J. Otten-

stein. The program dependence web: A represen-

tation supporting control-, data- and demand-

driven interpretation of imperative languages. In

Proceedings of the SIGPLAN ’90 Conference on

Programming Languages Design and Implementa-

tion, June 1990.

P. Briggs, Register Allocation via Graph Coloring.

Ph.D. thesis, Rice University, 1992.

P. Briggs. The Massively Scalar Compiler Project.

Unpublished report. Preliminary version available

via ftp://cs.rice.edu/public/prestonloptirnizer/

shared.ps. Rice University, July 1994.

P. Briggs and K. Cooper. Effective partial redun-

dancy elimination, In Proceedings of the

SIGPLAN ’94 Conference on Programming Lan-

guages Design and Implementation, June 1994.

P. Briggs and T. Harvey. Iloc ’93. Technical re-

port CRPC-TR93323, Rice University, 1993.

R. Cartwright and M. Felleisen, The semantics of

program dependence, In Proceedings of the

SIGPLAN ’89 Conference on Programming Lan-

guages Design and Implementation, June 1989.

G. J. Chaitin. Register allocation and spilling via

graph coloring, In Proceedings of the SIGPLAN

’82 Symposium on Compiler Construction, June

1982.

C. Click, Combining Analyses, Combining Optimi-

zatiorzs. Ph.D. thesis, Rice University, 1995.

J. Coeke and J. T. Schwartz. Programming lan-

guages and their compilers. Courant Institute of

Mathematical Sciences, New York University,

April 1970.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Weg-

man, and F. K, Zadeck, An efficient method of

computing static single assignment form. In Con-
ference Record of the Sixteenth ACM Symposium

on the Principles of Programming Lunguages, Jan.

1989.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

K. H. Drechsler and M. P. Stadel. A solution to a

problem with Morel and Renvoise’s “Global opti-

mization by suppression of partial redundancies”.

ACM Transactions on Programming Languages

and Systems, 10(4):635–640, Oct. 1988.

G. E. Forstyhe, M. A. Malcom, and C. B. Moler.

Computer Methods for Mathematical Computa-

tions. Prentice-Hall, Englewood Cliffs, New Jer-

sey, 1977.

J. Ferrante, K. J. Ottenstein, and J. D. Warren.

The program dependence graph and its use in op-

timization. ACM Transactions on Programming

Languages and Systems, 9(3):3 19-349, July, 1987.

J. Knoop, O. Riithing, and B. Steffen. Partial dead

code elimination. In Proceedings of the SIGPLAN

’94 Conference on Programming Languages De-

sign and Implementation, June 1994.

T. Lengauer and R. E. Tarjan. A fast algorithm for

finding dominators in a flowgraph. ACM Transac-

tions on Programming Languages and Systems,

1(1):121-141, July, 1979.

E. Morel and C. Renvoise. Global optimization by

suppression of partial redundancies. Communica-

tions of the ACM, 22(2):96-103, Feb. 1979.

B. K. Rosen., M. N. Wegman, and F. K. Zadeck,

Global Value Numbers and Redundant Computa-

tions. In Conference Record of the Fifteenth A CM

Symposium on the Principles of Programtning

Languages, Jan. 1988.

T. Simpson, Global Value Numbering. Unpub-

lished report. Available from ftp://cs,rice.edu/

public/preston/optimizer/gval.ps. Rice University,

1994.

R. E. Tarjan. Testing flow graph reducibility.

Journal of Computer and System Sciences, 9:355-

365, 1974.

C. Vick, SSA-Based Reduction of Operator

Strength. Masters thesis, Rice University, pages

11-15, 1994.

D. Weise, R. Crew, M. Ernst, and B. Steensgaard,

Value dependence graphs: Representation without

taxation. In Proceedings of the 21st ACM

SIGPLAN Symposium on the Principles of Pro-

gramming Languages, 1994.

M. N. Wegman and F. K. Zadeck. Constant

propagation with conditional branches. ACM

Transactions on Programming Languages and

Systems, 13(2): 181-210, April 1991.

257


