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Abstract
The linear scan algorithm for register allocation providesa good
register assignment with a low compilation overhead and is thus
frequently used for just-in-time compilers. Although mostof these
compilers use static single assignment (SSA) form, the algorithm
has not yet been applied on SSA form, i.e., SSA form is usually
deconstructed before register allocation. However, the structural
properties of SSA form can be used to simplify the algorithm.

With only one definition per variable, lifetime intervals (the
main data structure) can be constructed without data flow analy-
sis. During allocation, some tests of interval intersection can be
skipped because SSA form guarantees non-intersection. Finally,
deconstruction of SSA form after register allocation can beinte-
grated into the resolution phase of the register allocator without
much additional code.

We modified the linear scan register allocator of the Java
HotSpotTM client compiler so that it operates on SSA form. The
evaluation shows that our simpler and faster version generates
equally good or slightly better machine code.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization, Code generation

General Terms Algorithms, Languages, Performance

Keywords Java, just-in-time compilation, register allocation, lin-
ear scan, SSA form, lifetime analysis, SSA form deconstruction

1. Introduction
Register allocation, i.e., the task of assigning processorregisters
to local variables and temporary values, is one of the most im-
portant compiler optimizations. A vast amount of research has led
to algorithms ranging from simple and fast heuristics to optimal
algorithms with exponential time complexity. Because the prob-
lem is known to be NP-complete [8], algorithms must balance the
time necessary for allocation against the resulting code quality. Two
common algorithms in modern compilers aregraph coloring(see
for example [5, 8]), which is suitable when compilation timeis not
a major concern, andlinear scan[22, 28], which is faster and there-
fore frequently used for just-in-time compilers where compilation
time adds to run time.
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Static single assignment (SSA) form [9] is a type of interme-
diate representation that simplifies many compiler optimizations.
All variables have only a single point of definition. At control flow
joins,phi functionsare used to merge different variables of the pre-
decessor blocks. Because processors cannot execute phi functions,
it is necessary to replace them with move instructions during code
generation (SSA form deconstruction).

Traditionally, SSA form deconstruction was performed before
register allocation. Only recently has it been observed that register
allocation on SSA form has several advantages due to additional
guarantees on variable lifetime. Lifetime information is essential
for register allocation because two variables that interfere, i.e., that
are live at the same time, must not have the same register assigned.
The interference graph of a program in SSA form ischordal(every
cycle with four or more edges has an edge connecting two vertices
of the cycle, leading to a triangulated structure).

Many graph algorithms are simpler on chordal graphs, e.g.,
graph coloring can be performed in polynomial time. These proper-
ties were used to simplify register allocators based on graph color-
ing [14]. When the maximum register pressure is below or equal to
the number of available registers, allocation is guaranteed to suc-
ceed. This allows to split the algorithms for spilling and register
assignment. Traditionally, spilling and register assignment were in-
terleaved, i.e., a variable was spilled when the graph turned out to
be not colorable. This led to a time-consuming repeated execution
of the graph coloring algorithm.

This paper explores the impact of SSA form on linear scan regis-
ter allocation. Thelifetime intervals, which are the basic data struc-
ture of the algorithm, are easier to construct and have a simpler
structure. Additionally, infrastructure already presentin the linear
scan algorithm can be used to perform SSA form deconstruction
after register allocation, thus making a separate SSA form decon-
struction algorithm unnecessary.

Our implementation for the Java HotSpotTM client compiler
shows that SSA form leads to a simpler and faster linear scan al-
gorithm. It generates the same or even better code than the current
product version that deconstructs SSA form before registeralloca-
tion. In summary, this paper contributes the following:

• We show how SSA form affects the lifetime intervals used by
the linear scan algorithm.

• We present an algorithm for constructing lifetime intervals that
does not require data flow analysis. The algorithm can also be
adapted to construct the interference graph for graph coloring
register allocation.

• We show how to use SSA form properties during allocation.

• We integrate SSA form deconstruction into the resolution phase
of the linear scan algorithm.

• We evaluate the algorithm using the Java HotSpotTM client
compiler.
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Figure 1. Linear scan register allocation not on SSA form.

2. Overview
The linear scan algorithm is used for register allocation inmany
major compilers, e.g., the client compiler of the Java HotSpotTM

VM [11, 16], the optimizing compiler of the Jikes RVM [1], and
the compiler of the Low Level Virtual Machine (LLVM) [17]. All
implementations use different heuristics to make the algorithm fast
and to produce good machine code, but none operate on SSA form.
However, all three compilers use SSA form for global optimiza-
tions, so all provide the necessary infrastructure for SSA-form-
based register allocation.

We use our previous work on linear scan register allocation
for the Java HotSpotTM client compiler [30] as the baseline for
this study. The client compiler is a production-quality just-in-time
compiler and thus highly tuned both for compilation speed and
code quality. Its source code is available as open source from the
OpenJDK project [27]. Implementation details of the linearscan
register allocator are available from [29].

The front end of the client compiler first parses Java byte-
codes [18] and constructs the high-level intermediate represen-
tation (HIR), which is in SSA form. Several optimizations are
performed on the HIR, including constant folding, global value
numbering, method inlining, and null-check elimination. The back
end translates the HIR into the low-level intermediate representa-
tion (LIR). It is not in SSA form in the current product version, so
the translation includes SSA form deconstruction.

The LIR is register based. At first, most operands are virtualreg-
isters. Only register constraints of the target architecture are mod-
eled using physical registers in the initial LIR. Before register al-
location, the control flow graph is flattened to a list of blocks. The
register allocator replaces all virtual registers with physical regis-
ters, thereby inserting code for spilling registers to the stack if more
values are simultaneously live than registers are available. This is
accomplished by splitting lifetime intervals, which requires a reso-
lution phase after register allocation to insert move instructions at
control flow edges. There is no distinction between local variables
and temporary values, they are all uniformly represented asvirtual
registers. After register allocation, each LIR operation is translated
to one or more machine instructions, whereby most LIR operations
require only one machine instruction. Figure 1 shows the compiler
phases of the current product version that are relevant for register
allocation.

Figure 2 illustrates the changes necessary for SSA-form-based
register allocation. SSA form is no longer deconstructed before reg-
ister allocation. Additionally, construction of lifetimeintervals is
simplified because no data flow analysis is necessary. The main
linear scan algorithm remains mostly unchanged, but still benefits
from some SSA form properties. If SSA form is no longer required
after register allocation, as in our implementation, SSA form de-
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Figure 2. Linear scan register allocation on SSA form.

construction can be easily integrated into the already existing reso-
lution phase.

Moving out of SSA form after register allocation is reasonable
because register allocation is usually one of the last global opti-
mizations, so SSA form would not be beneficial afterwards. How-
ever, it would also be possible to maintain SSA form, which re-
quires the insertion of new phi functions for variables whose life-
time intervals were split. The standard algorithm for SSA form con-
struction [9] can be used for this.

3. Lifetime Intervals and SSA Form
Our variant of the linear scan algorithm requires exact lifetime
information: The lifetime interval of a virtual register must cover all
parts where this register is needed, with lifetime holes in between.
Lifetime holes occur because the control flow graph is reduced to
a list of blocks before register allocation. If a register flows into an
else-block, but not into the correspondingif-block, the lifetime
interval has a hole for theif-block. In contrast, a register defined
before a loop and used inside the loop must be live in all blocks of
the loop, even blocks after the last use.

The lifetime intervals resulting from phi functions have char-
acteristic patterns. When SSA form is deconstructed beforeregis-
ter allocation, move instructions are inserted at the end ofa phi
function’s predecessor blocks. This leads to a lifetime interval with
multiple definition points and lifetime holes before these defini-
tions. SSA form deconstruction inserts the moves in a certain order.
While there are some constraints for the order in cases wherethe
same register is both used and defined by phi functions of the same
block, the order is mostly arbitrary.

Figure 3(c) shows the lifetime intervals for the LIR fragment
(computing the factorial of a number) shown in Figure 3(a). Four
blocksB1 to B4 use six virtual registersR10 to R15. Assume that
R10 andR11 are defined inB1, and thatR10 andR12 are used inB4.
R10 represents a long-living value that is infrequently used but still
alive, e.g., thethis pointer of a Java method. The LIR operations
20 to 42 (numbers are incremented by two for technical reasons)
are arithmetic and control flow operations that use up to two input
operands (either virtual registers or constants) and defineup to one
output operand (a virtual register).

The registersR12 andR13 represent the original phi functions,
and the registersR14 andR15 represent the new values assigned
to the phi functions at the end of the loop. Therefore,R12 andR13
have the characteristic lifetime intervalsi12 andi13 in Figure 3(c)
(virtual registers and intervals use matching numbers). Intervali12
is defined by the operations20 and36. Because the definition at36
overwrites the previous value without using it, there is a lifetime
hole before this operation, starting at the last use at operation 32.
The intervalsi12 andi13 have a similar structure, onlyi12 ex-
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Figure 3. Example of LIR and lifetime intervals.

tends after operation42 becauseR12 is used somewhere later in
blockB4. Note that although the intervali12 is contiguous fromB3
to B4, there is no direct control flow possible between these two
blocks.

Building lifetime intervals directly from LIR in SSA form
changes the pattern of the intervals. All phi functions at the be-
ginning of a block haveparallel copysemantics, i.e., they are not

ordered. All phi functions together specify a permutation of regis-
ters and not a list of copies. Therefore, it would be counterproduc-
tive to assign individual operation numbers to them; we justattach
them to the block label. The lifetime interval for the virtual regis-
ter defined by a phi function starts directly at the beginningof the
block. The lifetime intervals for the virtual registers used by a phi
function end at the end of the corresponding predecessor blocks (as
long as the virtual registers are not used by other operations after
the phi function).

Figure 3(b) and Figure 3(d) show the LIR and the lifetime inter-
vals of our example when using SSA form. The two phi functions
of block B2 are attached to operation20. Therefore, the lifetime
intervalsi12 andi13 both start at position20. The linear scan al-
gorithm, which processes intervals ordered by their start position,
can freely decide which interval to process first, i.e., in cases of
high register pressure it can better decide which intervalsto spill
at this position. Intervali13 no longer has a lifetime hole. Inter-
val i12 still requires a lifetime hole because the value is live at the
beginning ofB4 but not at the end ofB3, however the lifetime hole
ends at a block boundary.

These patterns of lifetime intervals show two advantages when
performing linear scan register allocation on SSA form: (1)No
artificial order is imposed for moves resulting from phi functions,
resulting in more freedom for the register allocator. (2) The lifetime
intervals for phi functions have fewer lifetime holes, leading to less
state changes of the intervals during allocation.

Note that both with and without SSA form, no coalescing
of non-overlapping lifetime intervals is performed. Without SSA
form, i.e., in the current product version, it would be too slow
and complicated. With SSA form, it is not allowed because it
would violate SSA form. In both cases,register hintsare used as a
lightweight replacement. Intervals that should be assigned the same
physical register are connected via a register hint. The linear scan
allocator honors this hint if possible, but is still allowedto assign
different registers. The source and target of a move are connected
with such a hint. With SSA form, the input and result operands
of a phi function are also connected. In our example, the inter-
valsi11, i13, andi15 are connected, as well as the intervalsi12

andi14. In this small example, the register hints lead to machine
code without any move instructions, both with and without SSA
form.

4. Lifetime Analysis
Traditionally, lifetime information has been computed using an
iterative data flow analysis that is repeated until a stable fixed-
point is reached. Using properties guaranteed by SSA form in
combination with a special block order allows us to eliminate the
data flow analysis. With SSA form, each virtual register has asingle
point of definition. This definition is “before” all uses, i.e., the
definition dominates all uses [7]. If the definition and a use are
in different blocks, this means that the block of the definition is
a dominator of the block of the use.

The linear scan algorithm does not operate on a structured con-
trol flow graph, but on a linear list of blocks. The block orderhas a
high impact on the quality and speed of linear scan: A good block
order leads to short lifetime intervals with few holes. Our block or-
der guarantees the following properties: First, all predecessors of
a block are located before this block, with the exception of back-
ward edges of loops. This implies that all dominators of a block are
located before this block. Secondly, all blocks that are part of the
same loop are contiguous, i.e., there is no non-loop block between
two loop blocks. Even though the current product version of the
client compiler’s linear scan algorithm could operate on any block
order, this order turned out to be best.
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BUILDINTERVALS

for each block b in reverse order do

live = union of successor.liveIn for each successor of b

for each phi function phi of successors of b do

live.add(phi.inputOf(b))

for each opd in live do

intervals[opd].addRange(b.from, b.to)

for each operation op of b in reverse order do

for each output operand opd of op do

intervals[opd].setFrom(op.id)
live.remove(opd)

for each input operand opd of op do

intervals[opd].addRange(b.from, op.id)
live.add(opd)

for each phi function phi of b do

live.remove(phi.output)

if b is loop header then

loopEnd = last block of the loop starting at b
for each opd in live do

intervals[opd].addRange(b.from, loopEnd.to)

b.liveIn = live

Figure 4. Algorithm for construction of lifetime intervals.

4.1 Algorithm

Input of the algorithm:

1. Intermediate representation in SSA form. An operation has
input and output operands. Only virtual register operands are
relevant for the algorithm.

2. A linear block order where all dominators of a block are before
this block, and where all blocks belonging to the same loop are
contiguous. All operations of all blocks are numbered usingthis
order.

Output of the algorithm: One lifetime interval for each virtual
register, covering operation numbers where this register is alive,
and with lifetime holes in between. Thus, a lifetime interval con-
sists of one or morerangesof operation numbers.

Figure 4 shows the algorithm. In addition to the input and output
data structures, it requires a set of virtual registers, called liveIn,
for each block. It is used to propagate the virtual registersthat
are live at the beginning of a block to the block’s predecessors.
The algorithm requires one linear iteration of all blocks and all
operations of each block. The iteration is in reverse order so that all
uses of a virtual register are seen before its definition. Therefore,
successors of a block are processed before this block. Only for
loops, the loop header (which is a successor of the loop end) cannot
be processed before the loop end, so loops are handled as a special
case.

The initial set of virtual registers that are live at the end of
block b is the union of all registers live at the beginning of the
successors ofb. Additionally, phi functions of the successors con-
tribute to the initial live set. For each phi function, the input operand
corresponding tob is added to the live set. For each live register, an
initial live range covering the entire block is added. This live range
might be shortened later if the definition of the register is encoun-
tered.

Next, all operations ofb are processed in reverse order. An out-
put operand, i.e., a definition of a virtual register, shortens the cur-
rent range of the register’s lifetime interval; the start position of the
first range is set to the current operation. Additionally, the register

is removed from the set of live registers. An input operand, i.e., a
use of a virtual register, adds a new range to the lifetime interval
(the new range is merged if an overlapping range is present).The
new live range starts at the beginning of the block, and againmight
be shortened later. Additionally, the register is added to the set of
live registers.

Phi functions are not processed during this iteration of opera-
tions, instead they are iterated separately. Because the live range
of a phi function starts at the beginning of the block, it is not nec-
essary to shorten the range for its output operand. The operand is
only removed from the set of live registers. The input operands of
the phi function are not handled here, because this is done indepen-
dently when the different predecessors are processed. Thus, neither
an input operand nor the output operand of a phi function is live at
the beginning of the phi function’s block.

The steps described so far are sufficient to create the lifetime
intervals for methods without loops. With loops, the intervals are
incomplete: When a loop’s end block is processed, the loop header
has not been processed, so itsliveIn set is still empty. Therefore,
registers that are alive for the entire loop are missing at this time.
These registers are known at the time the loop header is processed:
All registers live at the beginning of the loop header must belive
for the entire loop, because they are defined before the loop and
used inside or after it. Using the property that all blocks ofa loop
are contiguous in the linear block order, it is sufficient to add one
live range, spanning the entire loop, for each register thatis live at
the beginning of the loop header.

Finally, the current set of live registers is saved in theliveInfield
of the block. Note thatliveIn is only a temporary data structure. Be-
cause the loop handling adds live ranges but does not updateliveIn
sets, they remain incomplete. If theliveIn sets were needed by a
later compiler phase, a fixup would also be necessary. However, we
do not need them later.

4.2 Example

The example shown in Figure 3(b) and Figure 3(d) uses the virtual
registersR10 to R15. The algorithm processes the blocks in the
orderB4, B3, B2, andB1. At the beginning ofB4, the registersR10
andR12 are live and therefore in theliveInset ofB4. The live ranges
of these values forB4 have been added.

The first complete block of the example isB3. The liveIn set of
its successorB2 is empty sinceB2 has not been processed yet.B2

has two phi functions, whose operands relevant forB3 areR14 and
R15. They are added to the live set, and the initial ranges spanning
the entire blockB3 are added. When the definitions ofR14 andR15
are encountered at operation28 and30, respectively, the ranges are
shortened to their final starting points. Ranges forR12 andR13 are
added, and these two registers are in theliveIn set ofB3. Note that
the live range ofR10 for B3 is not yet present.

The initial live set ofB2 is the union ofliveIn of B3 andB4,
i.e., it containsR10, R12, andR13. These three registers are live for
the entire block. BecauseR12 andR13 are defined by phi functions
of B3, they are removed from the live set when the phi functions
are processed, soR10 is the only register live at the beginning of
B2. BecauseB2 is a loop header, the special handling for loops is
performed: TheloopEndblock isB3, so a live range spanning from
the beginning ofB2 to the end ofB3 is added to the interval ofR10.
This live range is merged with the existing one, resulting inR10

being live contiguously.
Finally, B1 is processed. The registerR10 is initially live be-

cause it is in theliveIn set of the successorB2, andR11 is live be-
cause it is the relevant operand for a phi function. Live ranges are
added to the intervals of these two registers. The remaininghan-
dling of B1 is outside the scope of this example. Figure 3(d) shows
the final intervals for the example.
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Figure 5. CFG with irreducible loop.

4.3 Irreducible Control Flow

The algorithm presented in the previous sections does not work
properly for irreducible loops, i.e., for loops with multiple en-
try points. Java bytecodes are usually created from structured lan-
guages like Java, so irreducible loops do not occur normally. How-
ever, since Java bytecodes themselves are unstructured, they are
possible with handcrafted bytecodes.

Figure 5 shows such a loop: it can be entered via the blocksB4

andB5. The figure shows definitions and uses of the registersR10

andR11. ForR11, the algorithm works correctly: the register is in
the liveIn sets ofB4 andB5 and thus the liveness information is
correctly propagated to the blocksB3 andB2. However, the register
R10 is only in the liveIn set ofB4, since it was not yet regarded
as live whenB5 was processed. It is therefore not considered live
in B2, which is erroneous. There are two solutions to handle this
problem:

1. Perform a precise loop analysis for irreducible loops that cor-
rectly detects all entry blocks. Irreducible loops must be con-
tiguous, i.e., all non-loop blocks leading to a loop entry must be
placed before the first loop entry. After all blocks of a loop have
been processed by our algorithm, theliveIn of all loop headers
must be set to the union of the registers flowing into the loop.
This solution requires a more complicated loop analysis as well
as modifications to our algorithm.

2. Make sure thatnovalues flow into an irreducible loop, i.e., that
the liveIn set of all loop headers is empty. This can be achieved
by inserting phi functions at the loop headers for variablesthat
are not modified inside the loop. These phi functions serve as
explicit definitions of virtual registers inside the loop.

We use the second solution because the necessary precondi-
tions, the additional phi functions, are already fulfilled by the client
compiler. The client compiler uses a conservative SSA form con-
struction algorithm where phi functions are created when they
might be needed, and unnecessary phi functions are eliminated
later. However, they are not eliminated for irreducible loops be-
cause this would complicate the elimination algorithm and the ad-
ditional phi functions are not harmful. This is a good example how
the conservative handling of corner cases in multiple partsof the
compiler play nicely together.

One special case where irreducible loops occur in practice are
methods compiled foron-stack replacement(OSR) [10, 15]. In
order to switch from the interpreter to compiled code in the middle
of a long-running loop, the method is compiled with a specialentry
point that jumps directly into the middle of the method. Thisleads
to a loop with two entry points. However, since values flowinginto

TRYALLOCATEFREEREG

set freeUntilPos of all physical registers to maxInt
for each interval it in active do

freeUntilPos[it.reg] = 0
for each interval it in inactive intersecting with current do

freeUntilPos[it.reg] = next intersection of it with current
reg = register with highest freeUntilPos
...

ALLOCATEBLOCKEDREG

set nextUsePos of all physical registers to maxInt
for each interval it in active do

nextUsePos[it.reg] = next use of it after start of current
for each interval it in inactive intersecting with current do

nextUsePos[it.reg] = next use of it after start of current
reg = register with highest nextUsePos
...

Figure 6. Algorithm for register selection (from [30]).

the loop from the normal pre-loop code and from the OSR entry
point are completely disjoint, phi functions must always bepresent.
Therefore, OSR methods need no special handling in our register
allocator.

4.4 Analogy with Interference Graphs

Our algorithm to build lifetime intervals can be modified to build
the interference graph for a graph coloring register allocator in a
single pass over the operations. The live sets are managed inthe
same way. Whenever a definition of a register is encountered,this
register interferes with all registers that are currently in the live
set. It is sufficient to look at the definition points because SSA
form guarantees that two registers that interfere somewhere also
interfere at the definition of one of the registers [7]. Again, a special
handling is necessary at the loop header: A register live at the loop
header interferes with all registers defined inside the loop. It is
straightforward to collect all registers defined inside theloop during
the iteration of the operations, and to add the interferenceedges
with all registers live at the loop header.

5. Linear Scan Algorithm
The main linear scan algorithm needs no modifications to workon
SSA form. Because the algorithm is extensively described in[30],
we give only a short summary here. It processes the lifetime in-
tervals sorted by their start position and assigns a register or stack
slot to each interval. For this, four sets of intervals are managed:
unhandledcontains the intervals that start after the current position
and are therefore not yet of interest;activecontains the intervals
that are live at the current position;inactivecontains the intervals
that start before and end after the current position, but that have a
lifetime hole at the current position; andhandledcontains the inter-
vals that end before the current position and are therefore no longer
of interest. An interval can switch several times betweenactiveand
inactiveuntil it is finally moved tohandled. If a register is not avail-
able for the entire lifetime of an interval, this or another interval is
split and spilled to a stack slot, leading to new intervals added to
theunhandledset during the run of the algorithm. However, the al-
gorithm never backtracks, i.e., all added intervals alwaysstart after
the current position.

The main part of the linear scan algorithm is the selection of
a free register if one is available, or the selection of an interval
to be split and spilled if no register is available. Figure 6 shows
fragments of these two algorithms. While the original linear scan
algorithm [22] was designed to have linear runtime complexity,
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RESOLVE

for each control flow edge from predecessor to successor do

for each interval it live at begin of successor do

if it starts at begin of successor then

phi = phi function defining it
opd = phi.inputOf(predecessor)
if opd is a constant then

moveFrom = opd
else

moveFrom = location of intervals[opd] at end of predecessor
else

moveFrom = location of it at end of predecessor
moveTo = location of it at begin of successor
if moveFrom ≠ moveTo then

mapping.add(moveFrom, moveTo)

mapping.orderAndInsertMoves()

Figure 7. Algorithm for resolution and SSA form deconstruction.

the extensions to support lifetime holes and interval splitting [28,
30] introduced non-linear parts. Two of them are highlighted in
Figure 6 where the set of inactive intervals is iterated. Theset can
contain an arbitrary number of intervals since it is not bound by
the number of physical registers. Testing the current interval for
intersection with all of them can therefore be expensive.

When the lifetime intervals are created from code in SSA form,
this test is not necessary anymore: All intervals ininactive start
before the current interval, so they do not intersect with the current
interval at their definition. They are inactive and thus havea lifetime
hole at the current position, so they do not intersect with the current
interval at its definition. SSA form therefore guarantees that they
never intersect [7], making the entire loop that tests for intersection
unnecessary.

Unfortunately, splitting of intervals leads to intervals that no
longer adhere to the SSA form properties because it destroysSSA
form. Therefore, the intersection test cannot be omitted completely;
it must be performed if the current interval has been split off from
another interval. In summary, the highlighted parts of Figure 6 can
be guarded by a check whethercurrent is the result of an interval
split, and need not be executed otherwise. For our set of Java
benchmarks, this still saves 59% to 79% of all intersection tests.

6. Resolution and SSA Form Deconstruction
Linear scan register allocation with splitting of lifetimeintervals
requires aresolutionphase after the actual allocation. Because the
control flow graph is reduced to a list of blocks, control flow is
possible between blocks that are not adjacent in the list. When the
location of an interval is different at the end of the predecessor and
at the start of the successor, a move instruction must be inserted to
resolve the conflict. The resolving moves for a control flow edge
have the same semantics as the moves necessary to resolve phi
functions: They must be treated as parallel copies, i.e., a mapping
from source to target locations. The only difference is thatmoves
resulting from interval splitting originate from a single interval,
while moves resulting from phi functions have different intervals
for the source and the target. In both cases, the moves must be
ordered properly so that registers holding incoming valuesare not
overwritten with outgoing values.

Adding SSA form deconstruction requires only small exten-
sions to the existing resolution algorithm. Figure 7 shows the entire
algorithm. It visits every edge of the control flow graph, connect-
ing a blockpredecessorwith a block successor, and iterates all
intervals that are live at the beginning ofsuccessor. The algorithm
compares the location of the interval at the end ofpredecessorand
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Figure 8. Example for resolution and SSA form deconstruction.

the beginning ofsuccessor. If they are different, a move operation
is inserted. Because all moves must be ordered properly, they are
first added to a mapping and then ordered and inserted afterwards.
This part of the algorithm is not shown because it requires noSSA
form specific changes.

Intervals of phi functions ofsuccessorare live at the beginning
of successor, but not at the end ofpredecessor. SSA form proper-
ties and the block order guarantee that these intervals start at the
beginning ofsuccessor. This guarantee allows for a simple check
whether an interval is defined by a phi function. Three steps are
necessary to compute the source operand of the move operation
that resolves the phi function:

1. the phi function that defined the interval is retrieved,

2. the input operand of the phi function that belongs to block
predecessoris retrieved, and

3. the interval of this operand is used to add the move operation.

If the input operand is a constant, no interval is present because
constants can be directly used as the source of move operations.

Figure 8 shows an example for resolution that is necessary atthe
edges to blockB4. Block B4 has two predecessors,B2 andB3. Two
intervals are live at the beginning ofB4: i10 andi14. Intervali10
is defined before the beginning ofB4 (actually it is defined outside
the scope of our example). During register allocation,i10 was split
twice. At first, the location is the registereax. In the middle of
block B3, it was spilled and thus the location changes to stack slot
s1. At the beginning of blockB4, it is reloaded to registereax.

Interval i14 (with the assigned registerecx) is defined at the
beginning of blockB4 by a phi function. Assume that the operands
of the phi function areR12 (when coming from blockB3) andR13
(when coming from blockB2). The according intervals arei12
andi13, respectively. Intervali12 was split in blockB3 and thus
changes the location there from registerebx to stack slots2, while
interval i13 is always in registerecx. The scenario depicted is
realistic in that a method call inside blockB3 requires all intervals
to be spilled.

First, we look at the control flow edge fromB2 to B4. The
location of intervali10 at the end ofB2 iseax, and at the beginning
of B4 is alsoeax. Thus, no resolving move is necessary. Interval
i14 starts atB4. Accessing the corresponding phi function, its input
operand for blockB2, and the interval for this operand, yields the
interval i13. Because the location ofi13 andi14 are bothecx,
again no resolving move is necessary, and the mapping for this
control flow edge remains empty.
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Baseline Baseline Baseline Baseline

SPECjvm2008 SPECjbb2005 DaCapo SciMark

SSA Form SSA Form SSA Form SSA FormBaseline Baseline Baseline Baseline

Compilation Statistics

Compiled Methods 6,788 6,813 521 520 8,242 8,242 23 24 

Compiled Bytecodes [KByte] 1,094 1,098 78 78 2,272 2,275 3.64 3.65 

Avg. Method Size [Byte/Method] 165 165 153 153 282 283 162 156 

Compilation Time [msec.] 4,250 4,080 -4% 287 275 -4% 13,390 12,700 -5% 14.8 13.6 -8% 

Back End Time [msec.] 1,170 1,020 -13% 82 71 -13% 2,930 2,460 -16% 4.8 3.9 -19% 

Machine Code Size [KByte] 4,581 4,563 -0% 404 401 -1% 11,760 11,719 -0% 14.5 14.3 -1% 

SSA Form SSA Form SSA Form SSA Form

Machine Code Size [KByte] 4,581 4,563 -0% 404 401 -1% 11,760 11,719 -0% 14.5 14.3 -1% 

Memory Allocation

Lifetime Analysis [KByte] 65,248 58,877 -10% 5,047 4,559 -10% 171,650 129,794 -24% 270 246 -9% 

Allocation and Resolution [KByte] 48,171 48,169 -0% 3,255 3,239 -0% 89,144 88,879 -0% 180 168 -7% 

LIR Before Register Allocation

Moves 203,671 180,640 -11% 15,797 13,644 -14% 402,678 355,936 -12% 908 593 -35% 

Phi Functions 0 10,689 0 973 0 20,542 0 168 

LIR After Register AllocationLIR After Register Allocation

Moves Register to Register 55,592 53,856 -3% 4,473 4,245 -5% 127,318 124,351 -2% 193 177 -8% 

Moves Constant to Register 35,348 34,612 -2% 3,129 3,028 -3% 71,967 70,663 -2% 99 98 -1% 

Moves Stack to Register 4,537 4,550 +0% 335 335 -0% 3,718 3,722 +0% 12 12 0% 

Moves Register to Stack 38,715 33,650 -13% 2,636 2,187 -17% 65,973 56,639 -14% 166 158 -5% 

Moves Constant to Stack 0 926 0 105 0 1,386 0 1 

Moves Stack to Stack 0 294 0 22 0 647 0 0 

Figure 9. Comparison of compilation statistics.

The same steps are performed for the control flow edge fromB3

to B4. The location of intervali10 is s1 at the end ofB2 andeax
at the beginning ofB4, so a move froms1 to eax is added. The
phi function requires a resolving move from intervali12 to i14,
i.e., from the locations2 to ecx. Because the operands of the two
moves are not overlapping, they can be emitted in any order, and
resolving the mapping is trivial in this case.

Both the source and target operand of a move can be a stack
slot. Because one interval is assigned only one stack slot even when
it is split and spilled multiple times, moves between two different
stack slots can only occur with our added handling for phi func-
tions. Stack-to-stack moves are not supported by most architectures
and must be emulated with either a load and a store to a register
currently not in use, or a push and a pop of a memory location if
no register is free. Our implementation for the Intel x86 architec-
ture does not reserve a scratch register that is always available for
such moves. However, the register allocator has exact knowledge if
there is a register that is currently unused, and it is also possible to
use a floating point register for an integer value because no com-
putations need to be performed. Therefore, a register is available in
nearly all cases. Still, a stack-to-stack moves requires two machine
instructions, so we try to assign the same stack slot to the source
and target of a phi function when the according intervals do not
overlap.

7. Evaluation
We modified the client compiler of Sun Microsystems’ Java
HotSpotTM VM, using an early snapshot version of the upcoming
JDK 7 available from the OpenJDK project [27]. All benchmarks
are executed on a system with two Intel Xeon X5140 2.33 GHz
processors, 4 cores, and 32 GByte main memory, running Ubuntu

Linux with kernel version 2.6.28. The results are obtained using
32-bit VMs.

We compare our modified linear scan algorithm that oper-
ates on SSA form with the unmodified baseline version of the
JDK. We evaluate using the following groups of benchmarks: (1)
SPECjvm2008 [26] excluding the startup benchmarks (because
each of these runs in a new VM but we want to accumulate com-
pilation counters of one VM run) and the SciMark benchmarks
(because we evaluate them separately), (2) SPECjbb2005 [25], (3)
the DaCapo benchmarks [2] version 2006-10-MR2, and (4) Sci-
Mark 2.0 [23]. SciMark is available both standalone and as part of
SPECjvm2008. It consists of scientific kernels that requireonly few
methods to be compiled. We use the standalone version because the
framework infrastructure of SPECjvm2008 would significantly in-
crease the number of compiled methods.

7.1 Impact on Compile Time

Measuring the compile time is complicated because compilation
is done in parallel with execution and thus subject to random
noise. In particular, the Java HotSpotTM VM does not allow the
recording and replaying of a certain set of compiled methods.
Therefore, a slightly different set of methods is compiled when
repeatedly executing the same benchmark. To reduce this noise,
we limit the benchmarks to one benchmark thread if possible,
disable compilation in a separate thread, and report the average of
20 executions. The standard deviation of the number of compiled
methods and the size of compiled bytecodes is less than 0.8%
(relative to the reported mean) for all benchmarks. Nevertheless,
Figure 9 shows slightly different numbers when comparing the
baseline and our modified version of the client compiler.

The first group of rows in Figure 9 shows the basic compilation
statistics. SPECjvm2008 and DaCapo are large benchmark suites
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Figure 10. Compilation time of baseline (B) and SSA form (S)
version of linear scan.

where several thousand methods are compiled, SPECjbb2005 is of
medium size, and SciMark is small and requires only few methods
to be compiled. The average method size of the DaCapo bench-
marks is significantly larger than for the other benchmarks.The
lower compilation speed indicates that the overall compilation time
does not scale linearly with the method size, which is reasonable
because some optimizations of the client compiler do not runin
linear time. The average method size of SciMark is comparable to
SPECjvm2008 and SPECjvm2005, however SciMark consists only
of methods with several nested loops. This leads to a higher den-
sity of phi functions and thus a different behavior of the compiler.
SPECjvm2008 and SPECjbb2005 show roughly the same behavior
for all aspects of the compiler that we measured.

Our new register allocator decreases the overall compilation
time by 4% to 8%. The percentage for SciMark is larger compared
to the other benchmarks because the compiler spends less time
optimizing the HIR in the front end. The time spent in the back
end optimized by our changes (LIR construction, lifetime analysis,
linear scan register allocation, and resolution) is reduced by 13%
to 19%.

Figure 10 shows the detailed numbers for these four compiler
phases. For each benchmark, the first bar (B) shows the baseline
and the second bar (S) our modified SSA form version of linear
scan. The sizes of the bars are normalized to the baseline of the
according benchmark. The numbers shown inside the bars are the
total time in milliseconds spent in this phase, so they sum upto the
back end timerow of Figure 9. LIR construction is 19% to 27%
faster because SSA form deconstruction is no longer performed.
The lifetime analysis is 25% to 31% faster because the algorithm
described in Section 4 needs no global data flow analysis. Thetime
necessary for the linear scan algorithm is mostly unchangedbe-
cause our changes are minor. Only SciMark shows a 13% speedup
due to a high density of phi functions, whose intervals are simpler
now. The elimination of interval intersection checks described in
Section 5 does not gain a measurable speedup. The resolutionphase
is 1% to 10% slower because it now includes SSA form deconstruc-
tion. However, the additional time for the resolution phaseis much
smaller than the time saved during LIR construction, because SSA
form deconstruction is only a small addition to the resolution algo-
rithm while it was a complex algorithm during LIR construction.

The reduced compilation time is also accompanied by a re-
duced memory consumption. Because no intermediate data struc-
tures for the data flow analysis are necessary, and the lifetime inter-
vals for phi functions have fewer lifetime holes, the total memory

allocated during lifetime analysis is reduced by 9% to 24%. The
memory allocated during the linear scan algorithm and resolution
is mostly unchanged, only SciMark requires 7% less memory for
these phases.

The bottom half of Figure 9 shows how our changes affect the
number of move operations. Before register allocation, thenumber
of moves is 11% to 35% lower because phi functions are not yet
resolved with moves. But even the sum of the number of moves and
phi functions is lower than the original number of moves because
one phi function needs to be resolved to at least two moves.

After register allocation, when all phi functions are already
resolved, the number of moves is still lower, especially themoves
from a register to the stack. This benefit is partially alleviated by
two new categories of moves introduced by our changes: (1) moves
from a constant to the stack, and (2) moves between two stack
slots. These moves are introduced because the lifetime interval
of a phi function can have a stack slot assigned at the point of
definition. If a block has more phi functions than the processor
has physical registers, this assignment is inevitable because the
intervals for the phi functions all start at the same position. In the
old implementation, the phi functions were already resolved by a
series of moves, and spill decisions could be made after eachmove.
This resulted in cases where, for example, a constant was loaded to
a register and then the register was immediately spilled to astack
slot. Now, the constant is stored directly into the stack slot, leading
to fewer moves in total. Because of the lower number of moves,the
overall machine code size is also reduced, however this change is
rather insignificant (1% or less).

7.2 Impact on Run Time

The impact of our changes on the run time of the benchmarks
are low. Because the main allocation algorithm of linear scan is
unchanged, mostly the same allocation and spilling decisions are
made with and without SSA form. The speedups are generally be-
low the random noise and therefore not statistically significant. The
only exception is the FFT benchmark of SciMark with a speedup
of 1%, which is statistically significant because of the low variance
of SciMark results. It is caused by fewer moves in the heavilyex-
ecuted innermost computation loop of the benchmark. There is no
slowdown for any benchmark.

7.3 Impact on Compiler Code Size

Our modifications simplify the code of the client compiler and
reduce its code size. We measure the impact on the lines of C++
code, not counting empty lines, comments, assertions, verification
code, debug outputs, and any other code excluded from product
builds. The old code for SSA form deconstruction before register
allocation is completely unnecessary, eliminating about 180 lines.
Only about 20 lines are added to perform SSA form deconstruction
during resolution. The old code for initializing the data structures
and performing the global data flow analysis required about 150
lines and is now unnecessary. Our new algorithm for building
lifetime intervals, which is an extension of code that was already
present, added about 100 lines. Additionally, a number of smaller
changes both removed and added some lines. In total, the new code
is about 200 lines shorter than the old code.

8. Related Work
Poletto et al. introduced the linear scan algorithm [22]. Their vari-
ant does not use lifetime holes and is not able to split intervals, i.e.,
an interval has either one register assigned or is spilled for its entire
lifetime. This restricts the allocator but allows for a fastallocation
because it does not require a resolution phase. They alreadymen-
tioned that building the lifetime intervals consumes a considerable
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amount of the allocation time, and experimented with conserva-
tive heuristics for fast building of intervals. However, note that it is
not possible to do without a lifetime analysis. Thesecond chance
binpackingalgorithm of Traub et al. added lifetime holes and in-
terval splitting [28]. This makes the linear scan algorithmsuitable
for architectures with a low number of registers and few or even no
callee-saved registers.

In previous work, we presented additional optimizations that
improve the quality of linear scan register allocation without im-
pacting compile time overly much [30]. We use register hintsas a
lightweight alternative to coalescing of intervals, move spill stores
and loads out of loops, and eliminate redundant spill stores. The
implementation for the Java HotSpotTM client compiler is part of
the product version since Java 6 and the baseline for this imple-
mentation.

Sarkar et al. claim that theirextended linear scanalgorithm
produces better code than graph coloring algorithms [24]. They
show that the abstraction of graph coloring introduces unnecessary
constraints that can be avoided by a linear scan algorithm with
aggressive splitting of lifetime intervals. However, theyonly cover
spill free register allocation as well as register allocation with total
spills where entire lifetime intervals are spilled. This isa severe
restriction especially for register constrained architectures. None of
the previously mentioned versions of linear scan operates on SSA
form.

Mössenböck et al. provide an early approach to perform lin-
ear scan register allocation directly on SSA form [19]. However,
they still deconstruct SSA form before register allocationduring
the construction of the lifetime intervals: They insert move instruc-
tions into predecessor blocks for phi functions, leading tointervals
that start in the predecessor blocks and extending into the succes-
sor. They only keep the phi functions in the successor block as a
placeholder to start a new interval. They use data flow analysis to
construct the lifetime intervals, pre-order the moves and phi func-
tions instead of using the parallel copy semantics of the phifunc-
tions, and use no structural properties guaranteed by SSA form.

The original graph coloring register allocators (see for exam-
ple [5, 8]) are not based on SSA form. Only recently, the properties
guaranteed by SSA form were found to be beneficial [6, 12]. The
same properties that we use to simplify linear scan registeralloca-
tion, namely that the definition of every value dominates alluses
and that it is enough to check interference at the definition points
of values [7], simplify the construction of the interference graph
and allow spilling decisions to be decoupled from the actualcol-
oring phase. Hack et al. present an implementation for the libFirm
library [14]. Copy coalescing of phi functions and their arguments
is performed via graph recoloring [13].

Pereira et al. use the even more specializedstatic single infor-
mation(SSI) form for their register allocation based on puzzle solv-
ing [20]. SSI form requires not only phi functions for all variables
at every join point, but alsopi functions at every point where con-
trol flow splits. They claim to be faster and better than linear scan
register allocation, however their comparison is performed with a
linear scan variant not based on SSA form such as our implemen-
tation.

Boissinot et al. present a fast algorithm for liveness check-
ing of SSA form programs, using the structural properties guar-
anteed by SSA form [4]. Their algorithm performs only few pre-
computations, but still allows fast answers to the questionwhether a
certain value is live at a certain point in a method. It is not designed
to allow fast answers forall points in the program, therefore it is
not suitable for building lifetime intervals. Our algorithm to build
lifetime intervals requires more time than their pre-computation,
but then the intervals contain information about the lifetime of all
values for the entire method.

Boissinot et al. present an algorithm for SSA form deconstruc-
tion that is provably correct [3]. The complications they describe
where previous algorithms failed only arise when critical edges of
the control flow graph cannot be split. However, this is always pos-
sible when compiling from Java bytecodes, so this is not a concern
for our simple integration of SSA form deconstruction into the res-
olution phase of the linear scan algorithm.

Pereira et al. provide an algorithm for SSA form deconstruction
after register allocation [21]. It requires the input program to be in
conventional SSA(CSSA) form. Additionally to the normal SSA
form properties, CSSA form requires that all variables of a phi
function do not interfere. For example, the lifetime intervals of a
phi function’s input parameters must neither overlap the lifetime
interval of the phi function, nor themselves. CSSA form can be
obtained from SSA form by splitting life ranges that violatethis
property, leading to a higher number of variables. However,it is
then always safe to assign the same stack slot to a phi function
and all its input parameters when spilling is necessary. This avoids
moves between two different stack slots, which sometimes occur
with our algorithm.

9. Conclusions
Linear scan is a fast algorithm for register allocation especially
used by just-in-time compilers. This paper explored how theal-
gorithm benefits from an intermediate representation in SSAform.
The dominance property guaranteed by SSA form allows for a sim-
ple construction of lifetime intervals and eliminates checks for in-
terval intersection during allocation. Additionally, SSAform de-
construction can be easily integrated into the resolution phase of
the register allocator. Our implementation for the Java HotSpotTM

client compiler shows that the resulting algorithm is both simpler
and faster.
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